Branch switching in bifurcation problems for ordinary differential equations

作者: R. Seydel

DOI: 10.1007/BF01396308

关键词:

摘要: The problem of switching branches in boundary-value problems ordinary differential equations is considered. Three non-local methods for calculating emanating solutions near a nontrivial bifurcation point are proposed. These calculate one solution on an branch (without priori exact knowledge the point). Other can be obtained by global continuation. convenient as they consist solving standard software. construction initial approximation outlined. A characteristic feature proposed that easily automated; user avoid nearly all preparatory work. tested several examples arising different application areas.

参考文章(39)
Reinhard Menzel, Hubert Schwetlick, Zur L�sung parameterabh�ngiger nichtlinearer Gleichungen mit singul�ren Jacobi-Matrizen Numerische Mathematik. ,vol. 30, pp. 65- 79 ,(1978) , 10.1007/BF01403907
K. -H. Becker, R. Seydel, A duffing equation with more than 20 branch points Springer, Berlin, Heidelberg. pp. 98- 107 ,(1981) , 10.1007/BFB0090677
D. H. Sattinger, SPONTANEOUS SYMMETRY BREAKING IN BIFURCATION PROBLEMS Springer, Boston, MA. pp. 365- 383 ,(1980) , 10.1007/978-1-4684-3833-8_24
Eugene L Allgower, W. Blaschke Gesellschaft, Klaus Glashoff, Heinz-Otto Peitgen, Numerical Solution of Nonlinear Equations: Proceedings, Bremen, 1980 ,(1982)
Werner Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations Banach Center Publications. ,vol. 3, pp. 129- 142 ,(1978) , 10.4064/-3-1-129-142
Peter Deuflhard, A relaxation stratery for the modified Newton method Lecture Notes in Mathematics. pp. 59- 73 ,(1975) , 10.1007/BFB0079167