A Monte Carlo Analysis of Missing Data Techniques in a HRM Setting

作者: Philip L. Roth , Fred S. Switzer

DOI: 10.1177/014920639502100511

关键词:

摘要: Researchers have examined various techniques to solve the problem of missing data. Simple included listwise deletion, pairwise mean substitution, regression imputation and hot-deck imputation. Past research suggests that deletion generally result in less dispersion around true score values while results more scores. Unfortunately, this spent much time examining whether lead overestimation or underestimation statistics. The present study utilized a Monte Carlo Analysis simulate an HRM setting evaluate data techniques. Pairwise resulted least scores average error any technique for calculating correlations. Implications use these future were explored.

参考文章(27)
E. M. L. Beale, R. J. A. Little, Missing Values in Multivariate Analysis Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 37, pp. 129- 145 ,(1975) , 10.1111/J.2517-6161.1975.TB01037.X
Roderick J. A. Little, Missing-Data Adjustments in Large Surveys Journal of Business & Economic Statistics. ,vol. 6, pp. 287- 296 ,(1988) , 10.1080/07350015.1988.10509663
Terry C. Gleason, Richard Staelin, A proposal for handling missing data Psychometrika. ,vol. 40, pp. 229- 252 ,(1975) , 10.1007/BF02291569
Mark R. Raymond, Dennis M. Roberts, A Comparison of Methods for Treating Incomplete Data in Selection Research Educational and Psychological Measurement. ,vol. 47, pp. 13- 26 ,(1987) , 10.1177/0013164487471002
Frank L. Schmidt, John E. Hunter, Vern W. Urry, Statistical power in criterion-related validation studies. Journal of Applied Psychology. ,vol. 61, pp. 473- 485 ,(1976) , 10.1037/0021-9010.61.4.473
Jae-On Kim, James Curry, The Treatment of Missing Data in Multivariate Analysis Sociological Methods & Research. ,vol. 6, pp. 215- 240 ,(1977) , 10.1177/004912417700600206
James M. Lepkowski, J Richard Landis, Sharon A. Stehouwer, Strategies for the analysis of imputed data from a sample survey. The National Medical Care Utilization and Expenditure Survey. Medical Care. ,vol. 25, pp. 705- 716 ,(1987) , 10.1097/00005650-198708000-00004
Linda S. Chan, Olive Jean Dunn, The Treatment of Missing Values in Discriminant Analysis—I. The Sampling Experiment Journal of the American Statistical Association. ,vol. 67, pp. 473- 477 ,(1972) , 10.1080/01621459.1972.10482414
PHILIP L. ROTH, MISSING DATA: A CONCEPTUAL REVIEW FOR APPLIED PSYCHOLOGISTS Personnel Psychology. ,vol. 47, pp. 537- 560 ,(1994) , 10.1111/J.1744-6570.1994.TB01736.X