Numerical methods for nonconservative hyperbolic systems: a theoretical framework.

作者: Carlos Parés

DOI: 10.1137/050628052

关键词:

摘要: The goal of this paper is to provide a theoretical framework allowing one extend some general concepts related the numerical approximation 1-d conservation laws more case first order quasi-linear hyperbolic systems. In particular intended be useful for design and analysis well-balanced schemes solving balance or coupled systems laws. First, concept path-conservative introduced, which generalization conservative Then, we introduce definition approximate Riemann solvers give expression well-known families based on these solvers: Godunov, Roe, relaxation methods. Finally, form high scheme reconstruction operator presented.

参考文章(37)
Benoît Perthame, Chiara Simeoni, Convergence of the Upwind Interface Source Method for Hyperbolic Conservation Laws Hyperbolic Problems: Theory, Numerics, Applications. pp. 61- 78 ,(2003) , 10.1007/978-3-642-55711-8_5
P. G Lefloch, F Murat, G Dal Maso, Definition and weak stability of nonconservative products Journal de Mathématiques Pures et Appliquées. ,vol. 74, pp. 483- 548 ,(1995)
M.J. Castro, J.M. Gallardo, M.L. Muñoz, C. Parés, On a General Definition of the Godunov Method for Nonconservative Hyperbolic Systems. Application to Linear Balance Laws Springer, Berlin, Heidelberg. pp. 662- 670 ,(2006) , 10.1007/978-3-540-34288-5_64
Tomás Chacón Rebollo, Antonio Domı́nguez Delgado, Enrique D. Fernández Nieto, Asymptotically balanced schemes for non-homogeneous hyperbolic systems – application to the Shallow Water equations Comptes Rendus Mathematique. ,vol. 338, pp. 85- 90 ,(2004) , 10.1016/J.CRMA.2003.11.008
Kun Xu, A well-balanced gas-kinetic scheme for the shallow-water equations with source terms Journal of Computational Physics. ,vol. 178, pp. 533- 562 ,(2002) , 10.1006/JCPH.2002.7040
Randall J. LeVeque, Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods Journal of Computational Physics. ,vol. 146, pp. 346- 365 ,(1998) , 10.1006/JCPH.1998.6058
PIERRE-ARNAUD RAVIART, LIONEL SAINSAULIEU, A NONCONSERVATIVE HYPERBOLIC SYSTEM MODELING SPRAY DYNAMICS. PART I: SOLUTION OF THE RIEMANN PROBLEM Mathematical Models and Methods in Applied Sciences. ,vol. 05, pp. 297- 333 ,(1995) , 10.1142/S021820259500019X