Stochastic integrals and differential systems

作者: M. M. Rao

DOI: 10.1007/978-1-4757-6598-4_6

关键词:

摘要: We abstract and extend the stochastic integration with martingale integrators to more general processes for which dominated convergence theorem is still valid. The motivation here obtain a unified treatment of several different integrals, available in literature, by means generalized boundedness principle based on fundamental idea formulated S. Bochner. After presenting semi-martingale integrals next section, serve as key example, desired treated detail Section 2. It also shown there, 3, that earlier fit this frame work; applications are worked out exhibit universality principle, including some vector multiparameter cases. rest chapter devoted existence (and unicity) solutions both linear nonlinear higher order differential equations its progression flows L 2,2-bounded case. This work takes up Sections 4 5 below, most appears book form first time. Several other results included Complements section.

参考文章(240)
P. A. Meyer, Introduction et notations generales Springer Berlin Heidelberg. pp. 245- 248 ,(1976) , 10.1007/BFB0101112
N. Kazamaki, Note on a Stochastic Integral Equation Séminaire de probabilités de Strasbourg. ,vol. 6, pp. 105- 108 ,(1972) , 10.1007/BFB0059466
P. A. Meyer, Intégrales stochastiques II Séminaire de probabilités de Strasbourg. ,vol. 1, pp. 72- 87 ,(2002) , 10.1007/BFB0080548
Frank B. Knight, A reduction of continuous square-integrable martingales to Brownian motion Springer, Berlin, Heidelberg. pp. 19- 31 ,(1971) , 10.1007/BFB0065888
Ya. I. Belopol’skaya, Yu. L. Daletskiǐ, Stochastic Equations and Differential Geometry ,(1990)
Kari Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung Suomalainen Tiedeakatemia. ,(1947)
C. Stricker, Une caractérisation des quasimartingales Séminaire de probabilités de Strasbourg. ,vol. 9, pp. 420- 424 ,(1975) , 10.1007/BFB0103007
Catherine Dol�ans, Existence du processus croissant naturel associé à un potentiel de la classe (D) Probability Theory and Related Fields. ,vol. 9, pp. 309- 314 ,(1968) , 10.1007/BF00531754
P. Cartier, Introduction a l'étude des mouvements browniens a plusieurs paramètres Lecture Notes in Mathematics. ,vol. 5, pp. 58- 75 ,(1971) , 10.1007/BFB0058846
Laurent Schwartz, Probabilites cylindriques et applications radonifiantes Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics. ,vol. 18, pp. 139- 286 ,(1971)