Efficient $$F$$F measure maximization via weighted maximum likelihood

作者: Georgi Dimitroff , Georgi Georgiev , Laura Toloşi , Borislav Popov

DOI: 10.1007/S10994-014-5439-Y

关键词:

摘要: The classification models obtained via maximum likelihood-based training do not necessarily reach the optimal $$F_\beta $$Fs-measure for some user's choice of $$\beta $$s that is achievable with chosen parametrization. In this work we link weighted entropy and optimization expected $$Fs-measure, by viewing them in framework a general common multi-criteria problem. As result, each solution maximization can be realized as likelihood within model - well understood behaved problem which standard (off shelf) gradient methods used. Based on insight, present an efficient algorithm $$Fs using dynamically adaptive weights.

参考文章(20)
Dan Stefanoiu, Pierre Borne, Dumitru Popescu, Florin Gh. Filip, Abdelkader El Kamel, Multi‐Criteria Optimization John Wiley & Sons, Inc.. pp. 253- 308 ,(2014) , 10.1002/9781118648766.CH4
Hai L. Chieu, Kian M. Chai, Ye Nan, Wee S. Lee, Optimizing F-measure: A Tale of Two Approaches international conference on machine learning. pp. 1555- 1562 ,(2012)
Harith Alani, Yulan He, Miriam Fernández, Hassan Saif, Evaluation Datasets for Twitter Sentiment Analysis: A survey and a new dataset, the STS-Gold. ESSEM@AI*IA. pp. 9- 21 ,(2013)
Aron Culotta, Andrew McCallum, Confidence estimation for information extraction Proceedings of HLT-NAACL 2004: Short Papers on XX - HLT-NAACL '04. pp. 109- 112 ,(2004) , 10.3115/1613984.1614012
Martin Jansche, Maximum expected F-measure training of logistic regression models Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing - HLT '05. pp. 692- 699 ,(2005) , 10.3115/1220575.1220662
Kuzman Ganchev, Fernando Pereira, Mark Mandel, Steven Carroll, Peter White, Semi-automated named entity annotation Proceedings of the Linguistic Annotation Workshop on - LAW '07. pp. 53- 56 ,(2007) , 10.3115/1642059.1642068
Einat Minkov, Richard C. Wang, Anthony Tomasic, William W. Cohen, NER systems that suit user's preferences Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers on XX - NAACL '06. pp. 93- 96 ,(2006) , 10.3115/1614049.1614073
Thorsten Joachims, A support vector method for multivariate performance measures Proceedings of the 22nd international conference on Machine learning - ICML '05. pp. 377- 384 ,(2005) , 10.1145/1102351.1102399
D. L. Vandev, N. M. Neykov*, About Regression Estimators with High Breakdown Point Statistics. ,vol. 32, pp. 111- 129 ,(1998) , 10.1080/02331889808802657
Georgi Georgiev, Kuzman Ganchev, Vassil Momtchev, Deyan Peychev, Preslav Nakov, Angus Roberts, Tunable Domain-Independent Event Extraction in the MIRA Framework north american chapter of the association for computational linguistics. pp. 95- 98 ,(2009) , 10.3115/1572340.1572354