Hyperbolic random walks

作者: Jean-Claude Gruet

DOI: 10.1007/978-3-540-77913-1_14

关键词:

摘要: Although the hyperbolic r.w. defined on a regular planar grid satisfies an invariance principle, as we shall see, picture radically differs from Euclidean setting: infinite is whole space when step too small. We also give radial discretization of Bochner’s subordinated Brownian motions.

参考文章(42)
S. Cohen, Some Markov properties of stochastic differential equations with jumps Séminaire de probabilités de Strasbourg. ,vol. 29, pp. 181- 193 ,(1995) , 10.1007/BFB0094210
Harry Furstenberg, Random Walks on Lie Groups Harmonic Analysis and Representations of Semisimple Lie Groups. pp. 467- 489 ,(1980) , 10.1007/978-94-009-8961-0_16
David Applebaum, Lévy Processes in Stochastic Differential Geometry Lévy Processes. pp. 111- 137 ,(2001) , 10.1007/978-1-4612-0197-7_6
David Applebaum, Compound Poisson Processes and Lévy Processes in Groups and Symmetric Spaces Journal of Theoretical Probability. ,vol. 13, pp. 383- 425 ,(2000) , 10.1023/A:1007845508326
John G. Ratcliffe, Geometry of Discrete Groups Springer, New York, NY. pp. 192- 262 ,(1994) , 10.1007/978-1-4757-4013-4_6
Lars V Ahlfors, Irwin Kra, Bernard Maskit, Contributions to analysis : a collection of papers dedicated to Lipman Bers Academic Press. ,(1974)
Sidney Resnick, O. E. Barndorff-Nielsen, Thomas Mikosch, Lévy processes : theory and applications Birkhauser Boston. ,(2001)
Riccardo Benedetti, Carlo Petronio, Lectures on Hyperbolic Geometry Universitext. ,(1992) , 10.1007/978-3-642-58158-8