Multi-Fiber Reconstruction Using Probabilistic Mixture Models for Diffusion MRI Examinations of the Brain

作者: Snehlata Shakya , Nazre Batool , Evren Özarslan , Hans Knutsson

DOI: 10.1007/978-3-319-61358-1_12

关键词:

摘要: In the field of MRI brain image analysis, Diffusion tensor imaging ( DTI) provides a description diffusion water through tissue and makes it possible to trace fiber connectivity in brain, yielding map how is wired. DTI employs second order model based on assumption Gaussian diffusion. The assumption, however, limits use solving intra-voxel heterogeneity as can be non-Gaussian several biological tissues including human brain. Several approaches modeling reconstruction have been proposed last decades. Among such are multi-compartmental probabilistic mixture models. These models include discrete or continuous mixtures probability distributions Gaussian, Wishart von Mises-Fisher distributions. Given weighted data, problem resolving multiple fibers within single voxel boils down estimating parameters

参考文章(40)
Bing Jian, Baba C. Vemuri, Evren Özarslan, A Mixture of Wisharts (MOW) Model for Multifiber Reconstruction Springer Berlin Heidelberg. pp. 39- 56 ,(2009) , 10.1007/978-3-540-88378-4_3
D.S. Tuch, V.J. Wedeen, T.G. Reese, D. Chessler, M.R. Weigel, R.M. Weiskoff, J.-G. Dou, Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI ,(2000)
Carl-Fredrik Westin, Filip Szczepankiewicz, Ofer Pasternak, Evren Özarslan, Daniel Topgaard, Hans Knutsson, Markus Nilsson, Measurement tensors in diffusion MRI: generalizing the concept of diffusion encoding medical image computing and computer assisted intervention. ,vol. 17, pp. 209- 216 ,(2014) , 10.1007/978-3-319-10443-0_27
Qiuyun Fan, Thomas Witzel, Aapo Nummenmaa, Koene R.A. Van Dijk, John D. Van Horn, Michelle K. Drews, Leah H. Somerville, Margaret A. Sheridan, Rosario M. Santillana, Jenna Snyder, Trey Hedden, Emily E. Shaw, Marisa O. Hollinshead, Ville Renvall, Roberta Zanzonico, Boris Keil, Stephen Cauley, Jonathan R. Polimeni, Dylan Tisdall, Randy L. Buckner, Van J. Wedeen, Lawrence L. Wald, Arthur W. Toga, Bruce R. Rosen, MGH–USC Human Connectome Project datasets with ultra-high b-value diffusion MRI NeuroImage. ,vol. 124, pp. 1108- 1114 ,(2016) , 10.1016/J.NEUROIMAGE.2015.08.075
Angelos Barmpoutis, Bing Jian, Baba C. Vemuri, Adaptive Kernels for Multi-fiber Reconstruction information processing in medical imaging. ,vol. 21, pp. 338- 349 ,(2009) , 10.1007/978-3-642-02498-6_28
Bing Jian, Baba C. Vemuri, Multi-fiber reconstruction from diffusion MRI using mixture of wisharts and sparse deconvolution information processing in medical imaging. ,vol. 20, pp. 384- 395 ,(2007) , 10.1007/978-3-540-73273-0_32
Timothy O. Laumann, Evan M. Gordon, Babatunde Adeyemo, Abraham Z. Snyder, Sung Jun Joo, Mei-Yen Chen, Adrian W. Gilmore, Kathleen B. McDermott, Steven M. Nelson, Nico U.F. Dosenbach, Bradley L. Schlaggar, Jeanette A. Mumford, Russell A. Poldrack, Steven E. Petersen, Functional System and Areal Organization of a Highly Sampled Individual Human Brain. Neuron. ,vol. 87, pp. 657- 670 ,(2015) , 10.1016/J.NEURON.2015.06.037
Abhir Bhalerao, Carl-Fredrik Westin, Hyperspherical von Mises-Fisher mixture (HvMF) modelling of high angular resolution diffusion MRI medical image computing and computer assisted intervention. ,vol. 10, pp. 236- 243 ,(2007) , 10.1007/978-3-540-75757-3_29