Applications of Generative Adversarial Networks (GANs): An Updated Review

作者: Hamed Alqahtani , Manolya Kavakli-Thorne , Gulshan Kumar

DOI: 10.1007/S11831-019-09388-Y

关键词:

摘要: … our proposed similarity preserved generative adversarial networks model, SimPGAN. Specifically, SimPGAN adopts the generative adversarial networks with the cycle consistency …

参考文章(101)
Artur Kadurin, Alexander Aliper, Andrey Kazennov, Polina Mamoshina, Quentin Vanhaelen, Kuzma Khrabrov, Alex Zhavoronkov, The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology Oncotarget. ,vol. 8, pp. 10883- 10890 ,(2017) , 10.18632/ONCOTARGET.14073
Bernhard Schölkopf, Sylvain Gelly, Olivier Bousquet, Ilya O. Tolstikhin, Carl-Johann Simon-Gabriel, AdaGAN: Boosting Generative Models neural information processing systems. ,vol. 30, pp. 5424- 5433 ,(2017)
Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, Dilip Krishnan, Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks computer vision and pattern recognition. pp. 95- 104 ,(2017) , 10.1109/CVPR.2017.18
Grigory Antipov, Moez Baccouche, Jean-Luc Dugelay, Face aging with conditional generative adversarial networks international conference on image processing. pp. 2089- 2093 ,(2017) , 10.1109/ICIP.2017.8296650
Zhifei Zhang, Yang Song, Hairong Qi, Age Progression/Regression by Conditional Adversarial Autoencoder computer vision and pattern recognition. pp. 4352- 4360 ,(2017) , 10.1109/CVPR.2017.463
Yingyu Liang, Sanjeev Arora, Tengyu Ma, Rong Ge, Yi Zhang, Generalization and Equilibrium in Generative Adversarial Nets (GANs) international conference on machine learning. pp. 224- 232 ,(2017)
Kun Xu, Jun Zhu, Bo Zhang, Chongxuan Li, Triple Generative Adversarial Nets arXiv: Learning. ,(2017)
Jiwon Kim, Jung Kwon Lee, Moonsu Cha, Taeksoo Kim, Hyunsoo Kim, Learning to discover cross-domain relations with generative adversarial networks international conference on machine learning. pp. 1857- 1865 ,(2017)
Kiana Ehsani, Roozbeh Mottaghi, Ali Farhadi, SeGAN: Segmenting and Generating the Invisible 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6144- 6153 ,(2018) , 10.1109/CVPR.2018.00643
Dong Yang, Tao Xiong, Daguang Xu, Qiangui Huang, David Liu, S. Kevin Zhou, Zhoubing Xu, JinHyeong Park, Mingqing Chen, Trac D. Tran, Sang Peter Chin, Dimitris Metaxas, Dorin Comaniciu, Automatic Vertebra Labeling in Large-Scale 3D CT Using Deep Image-to-Image Network with Message Passing and Sparsity Regularization international conference information processing. pp. 633- 644 ,(2017) , 10.1007/978-3-319-59050-9_50