A generalized smoothing Newton method for the symmetric cone complementarity problem

作者: Yuan-Min Li , Deyun Wei

DOI: 10.1016/J.AMC.2015.04.105

关键词:

摘要: In this paper, a concept of regulation functions is proposed, and some related properties examples are explored. Based on function smoothing complementarity functions, we present family Newton methods to solve the symmetric cone problem. This algorithm allows unified convergence analysis for methods. We show that resulting equation well-defined solvable, provides theory global convergence.

参考文章(26)
G. Q. Wang, Y. Q. Bai, A Class of Polynomial Interior Point Algorithms for the Cartesian P-Matrix Linear Complementarity Problem over Symmetric Cones Journal of Optimization Theory and Applications. ,vol. 152, pp. 739- 772 ,(2012) , 10.1007/S10957-011-9938-8
Yuan Min Li, Xing Tao Wang, De Yun Wei, A new class of complementarity functions for symmetric cone complementarity problems Optimization Letters. ,vol. 5, pp. 247- 257 ,(2011) , 10.1007/S11590-010-0204-Z
Zheng-Hai Huang, Tie Ni, Smoothing algorithms for complementarity problems over symmetric cones Computational Optimization and Applications. ,vol. 45, pp. 557- 579 ,(2010) , 10.1007/S10589-008-9180-Y
Liqun Qi, Jie Sun, A nonsmooth version of Newton's method Mathematical Programming. ,vol. 58, pp. 353- 367 ,(1993) , 10.1007/BF01581275
Liang Fang, Congying Han, A new one-step smoothing Newton method for the second-order cone complementarity problem Mathematical Methods in The Applied Sciences. ,vol. 34, pp. 347- 359 ,(2011) , 10.1002/MMA.1366
F. Alizadeh, D. Goldfarb, Second-order cone programming Mathematical Programming. ,vol. 95, pp. 3- 51 ,(2003) , 10.1007/S10107-002-0339-5
Shaohua Pan, Jein-Shan Chen, A one-parametric class of merit functions for the symmetric cone complementarity problem Journal of Mathematical Analysis and Applications. ,vol. 355, pp. 195- 215 ,(2009) , 10.1016/J.JMAA.2009.01.064