Geodesic Distances and Hidden Markov Models for the 3D Face Recognition

作者: Giuseppe Mastronardi

DOI: 10.5772/8948

关键词:

摘要: Geodesic Distances and Hidden Markov Models for the 3D Face Recognition.

参考文章(46)
R. Kimmel, J. A. SETHIANt, Computing geodesic paths on ,(1998)
Yu Song, Joris Vergeest, Tjamme Wigers, Thomas Langerak, Estimating principal deformable freeform features by curvature analysis ieee international conference on computer-aided industrial design & conceptual design. pp. 1- 6 ,(2006) , 10.1109/CAIDCD.2006.329345
Ingwer Borg, Patrick Groenen, Modern multidimensional scaling : theory and applications Modern multidimensional scaling : theory and applications. New York. ,(1997)
Steve J Young, Sj Young, The HTK hidden Markov model toolkit: design and philosophy CUED Technical Report F_INFENG/TR152, Cambridge University Engineering Dept. ,(1993)
Elliot Aronson, Gardner Lindzey, Theory and method Random House. ,(1985)
T. Heseltine, N. Pears, J. Austin, Three-dimensional face recognition: an eigensurface approach international conference on image processing. ,vol. 2, pp. 1421- 1424 ,(2004) , 10.1109/ICIP.2004.1419769
Alessandro Verri, Emanuele Trucco, Introductory Techniques for 3-D Computer Vision ,(1998)
Thomas Heseltine, Nick Pears, Jim Austin, Three-Dimensional Face Recognition: A Fishersurface Approach international conference on image analysis and recognition. pp. 684- 691 ,(2004) , 10.1007/978-3-540-30126-4_83