Sub-diffusive electronic states in octagonal tiling

作者: D. Mayou , D. Mayou , C. Oguey , G. Trambly de Laissardière

DOI: 10.1088/1742-6596/809/1/012020

关键词:

摘要: We study the quantum diffusion of charge carriers in octagonal tilings. Our numerical results show a power law decay wave-packet spreading, L(t) ∝ tβ , characteristic critical states quasicrystals at large time t. For many energies are sub-diffusive, i.e. β < 0.5, and thus conductivity increases when amount defects (static and/or temperature) increases.

参考文章(42)
Guy Trambly de Laissardière, Jean-Pierre Julien, Didier Mayou, Quantum transport of slow charge carriers in quasicrystals and correlated systems. Physical Review Letters. ,vol. 97, pp. 026601- 026601 ,(2006) , 10.1103/PHYSREVLETT.97.026601
C Sire, J Bellissard, Renormalization Group for the Octagonal Quasi-Periodic Tiling EPL. ,vol. 11, pp. 439- 443 ,(1990) , 10.1209/0295-5075/11/5/009
Takeo Fujiwara, Takashi Mitsui, Susumu Yamamoto, Scaling properties of wave functions and transport coefficients in quasicrystals. Physical Review B. ,vol. 53, ,(1996) , 10.1103/PHYSREVB.53.R2910
Joshua E. S. Socolar, Simple octagonal and dodecagonal quasicrystals Physical Review B. ,vol. 39, pp. 10519- 10551 ,(1989) , 10.1103/PHYSREVB.39.10519
A. Jagannathan, F. Piéchon, Energy levels and their correlations in quasicrystals Philosophical Magazine. ,vol. 87, pp. 2389- 2415 ,(2007) , 10.1080/14786430701196990
S. Roche, T. Fujiwara, Fermi surfaces and anomalous transport in quasicrystals Physical Review B. ,vol. 58, pp. 11338- 11344 ,(1998) , 10.1103/PHYSREVB.58.11338
François Triozon, Julien Vidal, Rémy Mosseri, Didier Mayou, Quantum dynamics in two- and three-dimensional quasiperiodic tilings Physical Review B. ,vol. 65, pp. 220202- ,(2002) , 10.1103/PHYSREVB.65.220202
T. Fujiwara, M. Kohmoto, T. Tokihiro, Multifractal wave functions on a Fibonacci lattice Physical Review B. ,vol. 40, pp. 7413- 7416 ,(1989) , 10.1103/PHYSREVB.40.7413
D. Mayou, S. N. Khanna, A Real-Space Approach to Electronic Transport Journal De Physique I. ,vol. 5, pp. 1199- 1211 ,(1995) , 10.1051/JP1:1995191