On complete subsets of the cyclic group

作者: Y.O. Hamidoune , A.S. Lladó , O. Serra

DOI: 10.1016/J.JCTA.2007.12.007

关键词:

摘要: A subset X of an abelian G is said to be complete if every element can expressed as a nonempty sum distinct elements from X. Let [email protected]?Z"n such that all the are coprime with n. Solving conjecture Erdos and Heilbronn, Olson proved n prime |A|>2n. Recently Vu there absolute constant c, for arbitrary large n, |A|>=cn, conjectured 2 essentially right value c. We show |A|>1+2n-4, thus proving last conjecture.

参考文章(13)
GEORGE T. DIDERRICH, HENRY B. MANN, Combinatorial Problems in Finite Abelian Groups A Survey of Combinatorial Theory. pp. 95- 100 ,(1973) , 10.1016/B978-0-7204-2262-7.50015-6
P ERD&, H Heilbronn, On the addition of residue classes mod p Acta Arithmetica. ,vol. 9, pp. 149- 159 ,(1964) , 10.4064/AA-9-2-149-159
W. Gao, Y. Hamidoune, On additive bases Acta Arithmetica. ,vol. 88, pp. 233- 237 ,(1999) , 10.4064/AA-88-3-233-237
Frank Harary, C. R. Rao, S. S. Shrikhande, Jagdish N. Srivastava, A Survey of Combinatorial Theory ,(1973)
W. Gao, Y. O. Hamidoune, A. Lladó*, O. Serra†, Covering a Finite Abelian Group by Subset Sums Combinatorica. ,vol. 23, pp. 599- 611 ,(2003) , 10.1007/S00493-003-0036-X
George T. Diderrich, An addition theorem for Abelian groups of order pq Journal of Number Theory. ,vol. 7, pp. 33- 48 ,(1975) , 10.1016/0022-314X(75)90006-2
J. A. Dias Da Silva, Y. O. Hamidoune, Cyclic Spaces for Grassmann Derivatives and Additive Theory Bulletin of The London Mathematical Society. ,vol. 26, pp. 140- 146 ,(1994) , 10.1112/BLMS/26.2.140
Van H. Vu, Some new results on subset sums Journal of Number Theory. ,vol. 124, pp. 229- 233 ,(2007) , 10.1016/J.JNT.2006.08.012
Noga Alon, Melvyn B. Nathanson, Imre Ruzsa, The Polynomial Method and Restricted Sums of Congruence Classes Journal of Number Theory. ,vol. 56, pp. 404- 417 ,(1996) , 10.1006/JNTH.1996.0029
John E. Olson, An addition theorem modulo p Journal of Combinatorial Theory. ,vol. 5, pp. 45- 52 ,(1968) , 10.1016/S0021-9800(68)80027-4