A Low-rank Tensor Regularization Strategy for Hyperspectral Unmixing

作者: Tales Imbiriba , Ricardo Augusto Borsoi , Jose Carlos Moreira Bermudez

DOI: 10.1109/SSP.2018.8450853

关键词:

摘要: Tensor-based methods have recently emerged as a more natural and effective formulation to address many problems in hyperspectral imaging. In unmixing (HU), low-rank constraints on the abundance maps been shown act regularization which adequately accounts for multidimensional structure of underlying signal. However, imposing strict constraint does not seem be adequate, important information that may required represent fine scale behavior discarded. This paper introduces new tensor captures without hindering flexibility solution. Simulation results with synthetic real data show extra introduced by proposed significantly improves results.

参考文章(20)
Shuyuan Yang, Min Wang, Peng Li, Li Jin, Bin Wu, Licheng Jiao, Compressive Hyperspectral Imaging via Sparse Tensor and Nonlinear Compressed Sensing IEEE Transactions on Geoscience and Remote Sensing. ,vol. 53, pp. 5943- 5957 ,(2015) , 10.1109/TGRS.2015.2429146
Tales Imbiriba, Jose Carlos Moreira Bermudez, Cedric Richard, Jean-Yves Tourneret, Nonparametric Detection of Nonlinearly Mixed Pixels and Endmember Estimation in Hyperspectral Images IEEE Transactions on Image Processing. ,vol. 25, pp. 1136- 1151 ,(2016) , 10.1109/TIP.2015.2509258
Liangpei Zhang, Lefei Zhang, Dacheng Tao, Xin Huang, Tensor Discriminative Locality Alignment for Hyperspectral Image Spectral–Spatial Feature Extraction IEEE Transactions on Geoscience and Remote Sensing. ,vol. 51, pp. 242- 256 ,(2013) , 10.1109/TGRS.2012.2197860
Roger N. Clark, Gregg A. Swayze, K. Eric Livo, Raymond F. Kokaly, Steve J. Sutley, J. Brad Dalton, Robert R. McDougal, Carol A. Gent, Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems Journal of Geophysical Research: Planets. ,vol. 108, pp. 5131- ,(2003) , 10.1029/2002JE001847
Alina Zare, K.C. Ho, Endmember Variability in Hyperspectral Analysis: Addressing Spectral Variability During Spectral Unmixing IEEE Signal Processing Magazine. ,vol. 31, pp. 95- 104 ,(2014) , 10.1109/MSP.2013.2279177
Min Tao, Xiaoming Yuan, Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations Siam Journal on Optimization. ,vol. 21, pp. 57- 81 ,(2011) , 10.1137/100781894
Jose M. Bioucas-Dias, Antonio Plaza, Gustavo Camps-Valls, Paul Scheunders, Nasser Nasrabadi, Jocelyn Chanussot, Hyperspectral Remote Sensing Data Analysis and Future Challenges IEEE Geoscience and Remote Sensing Magazine. ,vol. 1, pp. 6- 36 ,(2013) , 10.1109/MGRS.2013.2244672
Lieven De Lathauwer, Cesar Caiafa, Danilo Mandic, Andrzej Cichocki, Guoxu Zhou, Qibin Zhao, Huy Anh Phan, Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis IEEE Signal Processing Magazine. ,vol. 32, pp. 145- 163 ,(2015) , 10.1109/MSP.2013.2297439
José MP Nascimento, José MB Dias, Vertex component analysis: a fast algorithm to unmix hyperspectral data IEEE Transactions on Geoscience and Remote Sensing. ,vol. 43, pp. 898- 910 ,(2005) , 10.1109/TGRS.2005.844293
José M. Bioucas-Dias, Antonio Plaza, Nicolas Dobigeon, Mario Parente, Qian Du, Paul Gader, Jocelyn Chanussot, Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. ,vol. 5, pp. 354- 379 ,(2012) , 10.1109/JSTARS.2012.2194696