Dynamical brain connectivity estimation using GARCH models: An application to personality neuroscience

作者: R Riccelli , L Passamonti , A Duggento , M Guerrisi , I Indovina

DOI: 10.1109/EMBC.2017.8037563

关键词:

摘要: It has recently become evident that the functional connectome of human brain is a dynamical entity whose time evolution carries important information underpinning physiological function as well its disease-related aberrations. While simple sliding window approaches have had some success in estimating connectivity MRI (fMRI) context, these methods suffer from limitations related to arbitrary choice length and limited resolution. Recently, Generalized autoregressive conditional heteroscedastic (GARCH) models been employed generate covariance which can be applied fMRI. Here, we employ GARCH-based method (dynamic correlation - DCC) estimate Human Connectome Project (HCP) dataset study how dynamic behaviors personality described by five-factor model. Openness, trait curiosity creativity, only associated with significant differences amount time-variability (but not absolute median connectivity) several inter-network connections brain. The DCC offers novel extract aid elucidating neurophysiological phenomena conventional static estimates are insensitive.

参考文章(15)
R. Matthew Hutchison, Thilo Womelsdorf, Elena A. Allen, Peter A. Bandettini, Vince D. Calhoun, Maurizio Corbetta, Stefania Della Penna, Jeff H. Duyn, Gary H. Glover, Javier Gonzalez-Castillo, Daniel A. Handwerker, Shella Keilholz, Vesa Kiviniemi, David A. Leopold, Francesco de Pasquale, Olaf Sporns, Martin Walter, Catie Chang, Dynamic functional connectivity: Promise, issues, and interpretations NeuroImage. ,vol. 80, pp. 360- 378 ,(2013) , 10.1016/J.NEUROIMAGE.2013.05.079
Matthew F. Glasser, Stamatios N. Sotiropoulos, J. Anthony Wilson, Timothy S. Coalson, Bruce Fischl, Jesper L. Andersson, Junqian Xu, Saad Jbabdi, Matthew Webster, Jonathan R. Polimeni, David C. Van Essen, Mark Jenkinson, The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage. ,vol. 80, pp. 105- 124 ,(2013) , 10.1016/J.NEUROIMAGE.2013.04.127
A. Zalesky, A. Fornito, L. Cocchi, L. L. Gollo, M. Breakspear, Time-resolved resting-state brain networks Proceedings of the National Academy of Sciences of the United States of America. ,vol. 111, pp. 10341- 10346 ,(2014) , 10.1073/PNAS.1400181111
Martin A. Lindquist, Yuting Xu, Mary Beth Nebel, Brain S. Caffo, Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach. NeuroImage. ,vol. 101, pp. 531- 546 ,(2014) , 10.1016/J.NEUROIMAGE.2014.06.052
Robert R. McCrae, Oliver P. John, An introduction to the five-factor model and its applications. Journal of Personality. ,vol. 60, pp. 175- 215 ,(1992) , 10.1111/J.1467-6494.1992.TB00970.X
L. Passamonti, A. Terracciano, R. Riccelli, G. Donzuso, A. Cerasa, MG. Vaccaro, F. Novellino, F. Fera, A. Quattrone, Increased functional connectivity within mesocortical networks in open people. NeuroImage. ,vol. 104, pp. 301- 309 ,(2015) , 10.1016/J.NEUROIMAGE.2014.09.017
R. Hindriks, M.H. Adhikari, Y. Murayama, M. Ganzetti, D. Mantini, N.K. Logothetis, G. Deco, Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? NeuroImage. ,vol. 127, pp. 242- 256 ,(2016) , 10.1016/J.NEUROIMAGE.2015.11.055
Roger E. Beaty, Scott Barry Kaufman, Mathias Benedek, Rex E. Jung, Yoed N. Kenett, Emanuel Jauk, Aljoscha C. Neubauer, Paul J. Silvia, Personality and complex brain networks: The role of openness to experience in default network efficiency. Human Brain Mapping. ,vol. 37, pp. 773- 779 ,(2016) , 10.1002/HBM.23065
Andrea Duggento, Marta Bianciardi, Luca Passamonti, Lawrence L. Wald, Maria Guerrisi, Riccardo Barbieri, Nicola Toschi, Globally conditioned Granger causality in brain–brain and brain–heart interactions: a combined heart rate variability/ultra-high-field (7 T) functional magnetic resonance imaging study Philosophical Transactions of the Royal Society A. ,vol. 374, pp. 20150185- ,(2016) , 10.1098/RSTA.2015.0185