Index trees for accelerating deformable template matching

作者: Lifeng Liu , Stan Sclaroff

DOI: 10.1016/S0167-8655(02)00108-3

关键词:

摘要: Abstract An improved method for deformable shape-based object detection and segmentation is described. A pre-computed index tree used to improve the speed of template fitting. Simple shape features are as keys in a pre-generated model instances. coarse fine indexing scheme at different levels further speed. The approach demonstrated an improvement previously-reported template-based region system. Experimental results show that when trees used, speedup significant while accuracy maintained.

参考文章(31)
Alexandre R. J. François, Gérard Medioni, Generic Shape Learning and Recognition ECCV '96 Proceedings of the International Workshop on Object Representation in Computer Vision II. pp. 287- 320 ,(1996) , 10.1007/3-540-61750-7_34
Linda G. Shapiro, Robert M. Haralock, Computer and Robot Vision Addison-Wesley Longman Publishing Co., Inc.. ,(1991)
U. Grenander, Y. Chow, D. M. Keenan, Hands: A Pattern Theoretic Study of Biological Shapes ,(1990)
Allen Gersho, Robert M. Gray, Vector Quantization and Signal Compression ,(1991)
R.C. Nelson, A. Selinger, A cubist approach to object recognition international conference on computer vision. pp. 614- 621 ,(1998) , 10.1109/ICCV.1998.710781
Richard C. Dubes, Anil K. Jain, Algorithms for clustering data ,(1988)
Alex P. Pentland, Automatic extraction of deformable part models International Journal of Computer Vision. ,vol. 4, pp. 107- 126 ,(1990) , 10.1007/BF00127812
Remi Ronfard, Region-based strategies for active contour models International Journal of Computer Vision. ,vol. 13, pp. 229- 251 ,(1994) , 10.1007/BF01427153
Colin S. Poon, Michael Braun, Rebecca Fahrig, Athula Ginige, Andrew Dorrell, Segmentation of medical images using an active contour model incorporating region-based image features Visualization in Biomedical Computing 1994. ,vol. 2359, pp. 90- 97 ,(1994) , 10.1117/12.185238
W. Eric L. Grimson, Tomas Lozano-Perez, Localizing Overlapping Parts by Searching the Interpretation Tree IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-9, pp. 469- 482 ,(1987) , 10.1109/TPAMI.1987.4767935