Mixed linear and semidefinite programming for combinatorial and quadratic optimization

作者: Steven J. Benson , Yinyu Yeb , Xiong Zhang

DOI: 10.1080/10556789908805761

关键词:

摘要: We use the semidefinite relaxation to approximate combinatorial and quadratic optimization problems subject linear, quadratic, as well boolean constraints. present a dual potential reduction algorithm show how exploit sparse structure of various problems. Coupled with randomized heuristic methods, we report computational results for approximating graph-partition dimensions 800 10,000. This finding, best our knowledge, is first evidence effectiveness these approximation algorithms solving large-scale

参考文章(16)
C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, G. Rinaldi, Exact Ground States of Ising Spin Glasses: New Experimental Results With a Branch and Cut Algorithm Journal of Statistical Physics. ,vol. 80, pp. 487- 496 ,(1995) , 10.1007/BF02178370
Yinyu Ye, Interior Point Algorithms Journal of the Operational Research Society. ,vol. 51, pp. 769- ,(1997) , 10.1002/9781118032701
Katsuki Fujisawa, Mituhiro Fukuda, Masakazu Kojima, Kazuhide Nakata, Numerical Evaluation of SDPA (Semidefinite Programming Algorithm) Springer US. pp. 267- 301 ,(2000) , 10.1007/978-1-4757-3216-0_11
Dimitris Bertsimas, Yinyu Ye, Semidefinite Relaxations, Multivariate Normal Distributions, and Order Statistics Handbook of Combinatorial Optimization. pp. 1473- 1491 ,(1998) , 10.1007/978-1-4613-0303-9_24
Yinyu Ye, Approximating quadratic programming with bound and quadratic constraints Mathematical Programming. ,vol. 84, pp. 219- 226 ,(1999) , 10.1007/S10107980012A
A. Frieze, M. Jerrum, Improved approximation algorithms for MAX k-CUT and MAX BISECTION Algorithmica. ,vol. 18, pp. 67- 81 ,(1997) , 10.1007/BF02523688
Michel X. Goemans, David P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming Journal of the ACM. ,vol. 42, pp. 1115- 1145 ,(1995) , 10.1145/227683.227684
Kendall E. Atkinson, An introduction to numerical analysis ,(1978)
C. Helmberg, F. Rendl, A Spectral Bundle Method for Semidefinite Programming Siam Journal on Optimization. ,vol. 10, pp. 673- 696 ,(1999) , 10.1137/S1052623497328987
L. Lovász, A. Schrijver, Cones of Matrices and Set-Functions and 0–1 Optimization Siam Journal on Optimization. ,vol. 1, pp. 166- 190 ,(1991) , 10.1137/0801013