A Pattern of Asymptotic Vertex Valency Distributions in Planar Maps

作者: Valery A Liskovets

DOI: 10.1006/JCTB.1998.1870

关键词:

摘要: Let a vertex be selected at random in set ofn-edged rooted planar maps andpkdenote the limit probability (asn?∞) of this to valencyk. For diverse classes including Eulerian, arbitrary, polyhedral, and loopless as well 2- 3-connected triangulations, it is shown that non-zeropkbehave asymptotically auniformmanner:pk~c(?k)?1/2rkask?∞ with some constantsrandcdepending on class. This distribution pattern can reformulated terms root valency. By contrast,pk=2?kfor class arbitrary plane trees andpk=(k?1)2?kfor triangular dissections convex polygons.

参考文章(19)
Helmut Prodinger, John W. Moon, A Bijective Proof of an Identity Concerning Nodes of Fixed Degree in Planted Trees. Ars Combinatoria. ,vol. 55, ,(2000)
Neal Noah Madras, Gordon Douglas Slade, The self-avoiding walk ,(1991)
D Gouyou-Beauchamps, G Viennot, Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem Advances in Applied Mathematics. ,vol. 9, pp. 334- 357 ,(1988) , 10.1016/0196-8858(88)90017-6
Harry Kesten, Book Review: The self-avoiding walk Bulletin of the American Mathematical Society. ,vol. 30, pp. 104- 109 ,(1994) , 10.1090/S0273-0979-1994-00441-0
Edward A. Bender, Nicholas C. Wormald, The number of loopless planar maps Discrete Mathematics. ,vol. 54, pp. 235- 237 ,(1985) , 10.1016/0012-365X(85)90084-6
Nachum Dershowitz, Shmuel Zaks, Enumerations of ordered trees Discrete Mathematics. ,vol. 31, pp. 9- 28 ,(1980) , 10.1016/0012-365X(80)90168-5
Bernhard Gittenberger, Michael Drmota, The distribution of nodes of given degree in random trees Journal of Graph Theory. ,vol. 31, pp. 227- 253 ,(1999) , 10.1002/(SICI)1097-0118(199907)31:3<>1.0.CO;2-#
L. Devroye, P. Flajolet, F. Hurtado, M. Noy, W. Steiger, Properties of Random Triangulations and Trees Discrete and Computational Geometry. ,vol. 22, pp. 105- 117 ,(1999) , 10.1007/PL00009444
EDWARD A. BENDER, E. RODNEY CANFIELD, ZHICHENG GAO, L. BRUCE RICMOND, Submap Density and Asymmetry Results for Two Parameter Map Families Combinatorics, Probability & Computing. ,vol. 6, pp. 17- 25 ,(1997) , 10.1017/S0963548396002799
Zhicheng Gao, L.Bruce Richmond, Root vertex valency distributions of rooted maps and rooted triangulations European Journal of Combinatorics. ,vol. 15, pp. 483- 490 ,(1994) , 10.1006/EUJC.1994.1050