On a Theory of Phase Transitions

作者: E D Belokolos

DOI: 10.1007/978-94-011-5004-0_4

关键词:

摘要: A random variable which characterizes a macroscopic body in statistical mechanics is proved to be infinitely divisible. It leads parametric representation of partition function an arbitrary body, possibility describe under excitation by gas some elementary quasiparticles etc. phase transition defined as such state that its stable sense Levy. From this definition it follows deduction all general properties transitions: existence renormalization semigroup, classification singularities thermodynamic functions, universality and classes. On basis we has also built 2-parametric scaling theory transitions, for the Ising model

参考文章(18)
W. Doeblin, Sur l'ensemble de puissances d'une loi de probabilité Studia Mathematica. ,vol. 9, pp. 71- 96 ,(1940) , 10.4064/SM-9-1-71-96
Mark Krein, David Milman, None, On extreme points of regular convex sets Studia Mathematica. ,vol. 9, pp. 133- 138 ,(1940) , 10.4064/SM-9-1-133-138
W. R. Schneider, Stable distributions: Fox function representation and generalization Stochastic Processes in Classical and Quantum Systems. ,vol. 262, pp. 497- 511 ,(1986) , 10.1007/3540171665_92
B. C. Brookes, Paul Levy, Théorie de l'addition des variables aléatoires The Mathematical Gazette. ,vol. 39, pp. 344- ,(1955) , 10.2307/3608623
G. Casati, S. Albeverio, D. Merlini, Stochastic Processes in Classical and Quantum Systems ,(1986)
S. Johansen, An application of extreme point methods to the representation of infinitely divisible distributions Probability Theory and Related Fields. ,vol. 5, pp. 304- 316 ,(1966) , 10.1007/BF00535361
Zbigniew J. Jurek, J. David Mason, Operator-limit distributions in probability theory ,(1993)
V. M. Zolotarev, On Representation of Densities of Stable Laws by Special Functions Theory of Probability and Its Applications. ,vol. 39, pp. 354- 362 ,(1995) , 10.1137/1139025