RNA-sequence data normalization through in silico prediction of reference genes: the bacterial response to DNA damage as case study.

作者: Bork A. Berghoff , Torgny Karlsson , Thomas Källman , E. Gerhart H. Wagner , Manfred G. Grabherr

DOI: 10.1186/S13040-017-0150-8

关键词:

摘要: Measuring how gene expression changes in the course of an experiment assesses organism responds on a molecular level. Sequencing RNA molecules, and their subsequent quantification, aims to assess global level (transcriptome). While advances high-throughput RNA-sequencing (RNA-seq) technologies allow for inexpensive data generation, accurate post-processing normalization across samples is required eliminate any systematic noise introduced by biochemical and/or technical processes. Existing methods thus either normalize selected known reference genes that are invariant experiment, assume majority invariant, or effects up- down-regulated cancel each other out during normalization. Here, we present novel method, moose 2 , which predicts silico through dynamic programming (DP) scheme applies quadratic based this subset. The method allows specifying set experimentally validated genes, guides DP. We verified predictions bacterium Escherichia coli, show able (i) estimate value distances between RNA-seq samples, (ii) reduce variation values all (iii) subsequently reveal new functional groups late stages DNA damage. further applied three eukaryotic sets, its performance compares favourably methods. software implemented C++ publicly available from http://grabherr.github.io/moose2/ . proposed valuable alternative existing methods, with two major advantages: prediction provides list potential downstream analyses, non-linear artefacts handled adequately minimize variations replicates.

参考文章(53)
Stephen G. Nash, Ariela Sofer, Igor Griva, Linear and Nonlinear Optimization ,(2009)
Christopher Workman, Lars Jensen, Hanne Jarmer, Randy Berka, Laurent Gautier, Henrik Nielser, Hans-Henrik Saxild, Claus Nielsen, Søren Brunak, Steen Knudsen, A new non-linear normalization method for reducing variability in DNA microarray experiments Genome Biology. ,vol. 3, pp. 1- 16 ,(2002) , 10.1186/GB-2002-3-9-RESEARCH0048
Bing Tian, Xueling Li, Mridul Kalita, Steven G. Widen, Jun Yang, Suresh K. Bhavnani, Bryant Dang, Andrzej Kudlicki, Mala Sinha, Fanping Kong, Thomas G. Wood, Bruce A. Luxon, Allan R. Brasier, Analysis of the TGFβ-induced program in primary airway epithelial cells shows essential role of NF-κB/RelA signaling network in type II epithelial mesenchymal transition BMC Genomics. ,vol. 16, pp. 529- 529 ,(2015) , 10.1186/S12864-015-1707-X
Cecilia Unoson, E. Gerhart H. Wagner, A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Molecular Microbiology. ,vol. 70, pp. 258- 270 ,(2008) , 10.1111/J.1365-2958.2008.06416.X
Jo Vandesompele, Katleen De Preter, Filip Pattyn, Bruce Poppe, Nadine Van Roy, Anne De Paepe, Frank Speleman, Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes Genome Biology. ,vol. 3, pp. 1- 12 ,(2002) , 10.1186/GB-2002-3-7-RESEARCH0034
Pavel P. Khil, R. Daniel Camerini-Otero, Over 1000 genes are involved in the DNA damage response of Escherichia coli. Molecular Microbiology. ,vol. 44, pp. 89- 105 ,(2002) , 10.1046/J.1365-2958.2002.02878.X
Jeffrey A. Martin, Zhong Wang, Next-generation transcriptome assembly Nature Reviews Genetics. ,vol. 12, pp. 671- 682 ,(2011) , 10.1038/NRG3068
Marc P. Hoeppner, Andrew Lundquist, Mono Pirun, Jennifer R. S. Meadows, Neda Zamani, Jeremy Johnson, Görel Sundström, April Cook, Michael G. FitzGerald, Ross Swofford, Evan Mauceli, Behrooz Torabi Moghadam, Anna Greka, Jessica Alföldi, Amr Abouelleil, Lynne Aftuck, Daniel Bessette, Aaron Berlin, Adam Brown, Gary Gearin, Annie Lui, J. Pendexter Macdonald, Margaret Priest, Terrance Shea, Jason Turner-Maier, Andrew Zimmer, Eric S. Lander, Federica di Palma, Kerstin Lindblad-Toh, Manfred G. Grabherr, An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts. PLOS ONE. ,vol. 9, ,(2014) , 10.1371/JOURNAL.PONE.0091172
Kang Zhou, Lihan Zhou, Qing Lim, Ruiyang Zou, Gregory Stephanopoulos, Heng-Phon Too, Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR BMC Molecular Biology. ,vol. 12, pp. 18- 18 ,(2011) , 10.1186/1471-2199-12-18