Structures, Diversity and Pharmacology of Glycine Receptors and Transporters

作者: H. Betz , R. J. Harvey , P. Schloss

DOI: 10.1007/978-3-642-56833-6_16

关键词:

摘要: The amino acid glycine is highly concentrated in the ventral and dorsal horns of spinal cord, many brain stem nuclei, sensory relay stations such as cochlear nucleus retina. Traditional physiological studies have shown that a major inhibitory neurotransmitter performs vital role control both motor pathways (Aprison 1990). In presynaptic nerve terminals glycinergic interneurons cord stem, cytosolic small clear synaptic vesicles by an H+-dependent vesicular transporter. Excitation these leads to calcium-triggered fusion with plasma membrane, thus liberating into cleft. Glycine then binds postsynaptic receptors (GlyRs), causing gating integral anion channel increases chloride ion conductance membrane. This action selectively antagonized plant alkaloid strychnine. mature neurons, where equilibrium potential approximates resting potential, GlyR activation results influx. neutralizes depolarization sodium influx, thereby inhibiting propagation potentials. However, different response found developing nervous system, immature neurons contain very high intracellular concentrations (Wang et al. 1994). Here, glycine-induced cause CI-efflux, resulting cell (see Reichling 1994; Boehm 1997).

参考文章(152)
S. Rajendra, R.J. Vandenberg, K.D. Pierce, A.M. Cunningham, P.W. French, P.H. Barry, P.R. Schofield, The unique extracellular disulfide loop of the glycine receptor is a principal ligand binding element. The EMBO Journal. ,vol. 14, pp. 2987- 2998 ,(1995) , 10.1002/J.1460-2075.1995.TB07301.X
D. Langosch, B. Laube, N. Rundström, V. Schmieden, J. Bormann, H. Betz, Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia. The EMBO Journal. ,vol. 13, pp. 4223- 4228 ,(1994) , 10.1002/J.1460-2075.1994.TB06742.X
I. Pribilla, T. Takagi, D. Langosch, J. Bormann, H. Betz, The atypical M2 segment of the beta subunit confers picrotoxinin resistance to inhibitory glycine receptor channels. The EMBO Journal. ,vol. 11, pp. 4305- 4311 ,(1992) , 10.1002/J.1460-2075.1992.TB05529.X
Stephen F. Kingsmore, Bruno Giros, David Suh, Mark Bieniarz, Marc G. Caron, Michael F. Seldin, Glycine receptor β–subunit gene mutation in spastic mouse associated with LINE–1 element insertion Nature Genetics. ,vol. 7, pp. 136- 142 ,(1994) , 10.1038/NG0694-136
M L Malosio, G Grenningloh, J Kuhse, V Schmieden, B Schmitt, P Prior, H Betz, Alternative splicing generates two variants of the alpha 1 subunit of the inhibitory glycine receptor. Journal of Biological Chemistry. ,vol. 266, pp. 2048- 2053 ,(1991) , 10.1016/S0021-9258(18)52207-9
Steven L. McIntire, Richard J. Reimer, Kim Schuske, Robert H. Edwards, Erik M. Jorgensen, Identification and characterization of the vesicular GABA transporter Nature. ,vol. 389, pp. 870- 876 ,(1997) , 10.1038/39908
M.L. Malosio, B. Marquèze-Pouey, J. Kuhse, H. Betz, Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. The EMBO Journal. ,vol. 10, pp. 2401- 2409 ,(1991) , 10.1002/J.1460-2075.1991.TB07779.X
Y. Maulet, L. Sefton, B. Courtier, P. Avner, J.L. Guénet, H. Betz, B. Matzenbach, Structural analysis of mouse glycine receptor alpha subunit genes. Identification and chromosomal localization of a novel variant. Journal of Biological Chemistry. ,vol. 269, pp. 2607- 2612 ,(1994) , 10.1016/S0021-9258(17)41987-9