Integrable random matrix ensembles

作者: E Bogomolny , O Giraud , C Schmit

DOI: 10.1088/0951-7715/24/11/010

关键词:

摘要: We propose new classes of random matrix ensembles whose statistical properties are intermediate between statistics Wigner-Dyson matrices and Poisson statistics. The construction is based on integrable N-body classical systems with a distribution momenta coordinates the particles. Lax these yield joint eigenvalues can be calculated analytically thanks to integrability underlying system. Formulas for spacing distributions level compressibility obtained various instances such ensembles.

参考文章(36)
Alexander Altland, Martin R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures Physical Review B. ,vol. 55, pp. 1142- 1161 ,(1997) , 10.1103/PHYSREVB.55.1142
Thomas Guhr, Axel Müller–Groeling, Hans A. Weidenmüller, Random-matrix theories in quantum physics: common concepts Physics Reports. ,vol. 299, pp. 189- 425 ,(1998) , 10.1016/S0370-1573(97)00088-4
Simon Ruijsenaars, Action-angle Maps and Scattering Theory for Some Finite-dimensional Integrable Systems III. Sutherland Type Systems and their Duals Publications of The Research Institute for Mathematical Sciences. ,vol. 31, pp. 247- 353 ,(1995) , 10.2977/PRIMS/1195164440
E. B. Bogomolny, U. Gerland, C. Schmit, Models of intermediate spectral statistics Physical Review E. ,vol. 59, ,(1999) , 10.1103/PHYSREVE.59.R1315
E. Bogomolny, O. Giraud, C. Schmit, Nearest-neighbor distribution for singular billiards. Physical Review E. ,vol. 65, pp. 056214- ,(2002) , 10.1103/PHYSREVE.65.056214
S. N. M. Ruijsenaars, Action-angle maps and scattering theory for some finite-dimensional integrable systems. I. The pure soliton case Communications in Mathematical Physics. ,vol. 115, pp. 127- 165 ,(1988) , 10.1007/BF01238855
Simon N. M. Ruijsenaars, Action-angle Maps and Scattering Theory for Some Finite-dimensional Integrable Systems II. Solitons, Antisolitons, and their Bound States Publications of The Research Institute for Mathematical Sciences. ,vol. 30, pp. 865- 1008 ,(1994) , 10.2977/PRIMS/1195164945