On the variety of a highest weight module

作者: Anthony Joseph

DOI: 10.1016/0021-8693(84)90100-5

关键词:

摘要: 1.2. Let U(g) be the enveloping algebra of g. Detailed information on primitive spectrum Prim was summarized by Conjecture 7.4 [ 181. Here a main question to relate with Springer correspondence. Parts (i), (ii) this conjecture were established in I, II and partial solution (iii) given [21] sufficient, e.g., treat g type A,. Meanwhile Borho Brylinski [5] have for induced ideals, while Barbasch Vogan 1, 2] version which %‘(gr I): I E is replaced certain wavefront set (known contained Y(gr 1)). This last work involves some case analysis gives little indication as why correspondence should arise study U(g).

参考文章(31)
A. Joseph, O. Gabber, On the Bernstein-Gelfand-Gelfand resolution and the Duflo sum formula Compositio Mathematica. ,vol. 43, pp. 107- 131 ,(1981)
Michel Demazure, Désingularisation des variétés de Schubert généralisées Annales Scientifiques De L Ecole Normale Superieure. ,vol. 7, pp. 53- 88 ,(1974) , 10.24033/ASENS.1261
Robert Steinberg, Conjugacy Classes in Algebraic Groups ,(1974)
A. Joseph, The enright functor on the Bernstein-Gelfand-Gelfand category $$\mathcal{O}$$ Inventiones Mathematicae. ,vol. 67, pp. 423- 445 ,(1982) , 10.1007/BF01398930
Robert Steinberg, On the Desingularization of the Unipotent Variety. Inventiones Mathematicae. ,vol. 36, pp. 209- 224 ,(1976) , 10.1007/BF01390010
David A. Vogan, A Generalized ...-Invariant for the Primitive Spectrum of a Semisimple Lie Algebra. Mathematische Annalen. ,vol. 242, pp. 209- 224 ,(1979) , 10.1007/BF01420727
A. Joseph, Kostant's problem, Goldie rank and the Gelfand-Kirillov conjecture Inventiones Mathematicae. ,vol. 56, pp. 191- 213 ,(1980) , 10.1007/BF01390044
G. Lusztig, N. Spaltenstein, Induced Unipotent Classes Journal of the London Mathematical Society. ,vol. s2-19, pp. 41- 52 ,(1979) , 10.1112/JLMS/S2-19.1.41
SigurĐur Helgason, Differential operators on homogeneous spaces Acta Mathematica. ,vol. 102, pp. 239- 299 ,(1959) , 10.1007/BF02564248