Low lying eigenvalues of randomly curved quantum waveguides

作者: Denis Borisov , Ivan Veselić

DOI: 10.1016/J.JFA.2013.08.011

关键词:

摘要: Abstract We consider the negative Dirichlet Laplacian on an infinite waveguide embedded in R 2 , and finite segments thereof. The is a perturbation of periodic strip terms sequence independent identically distributed random variables which influence curvature. derive explicit lower bounds first eigenvalue randomly curved small coupling (i.e. weak disorder) regime. This allows us to estimate probability low lying eigenvalues, tool relevant context Anderson localization for Schrodinger operators.

参考文章(64)
Naomasa Ueki, On spectra of random Schrödinger operators with magnetic fields Osaka Journal of Mathematics. ,vol. 31, pp. 177- 187 ,(1994) , 10.18910/4618
F. Ghribi, P. D. Hislop, F. Klopp, Localization for Schrodinger operators with random vector potentials arXiv: Mathematical Physics. ,(2007)
R. R. Gadyl'shin, Local Perturbations of the Schrödinger Operator on the Axis Theoretical and Mathematical Physics. ,vol. 132, pp. 976- 982 ,(2004) , 10.1023/A:1019615509634
Laszlo Erdos, David Hasler, Anderson localization for random magnetic Laplacian on Z^2 arXiv: Mathematical Physics. ,(2011)
Franz Wegner, Bounds on the density of states in disordered systems European Physical Journal B. ,vol. 44, pp. 9- 15 ,(1981) , 10.1007/BF01292646
Ivan Veselić, Wegner Estimate for Discrete Alloy-type Models Annales Henri Poincaré. ,vol. 11, pp. 991- 1005 ,(2010) , 10.1007/S00023-010-0052-5
J. Fröhlich, F. Martinelli, E. Scoppola, T. Spencer, Constructive proof of localization in the Anderson tight binding model Communications in Mathematical Physics. ,vol. 101, pp. 21- 46 ,(1985) , 10.1007/BF01212355
Frédéric Klopp, Localization for some continuous random Schrödinger operators Communications in Mathematical Physics. ,vol. 167, pp. 553- 569 ,(1995) , 10.1007/BF02101535