Some problems on the definition of fuzzy preference relations

作者: J. Montero , J. Tejada

DOI: 10.1016/S0165-0114(86)80030-6

关键词:

摘要: In this paper we deal with decision-making problems over an unfuzzy set of alternatives. On one hand, propose the problem finding a max-min transitive relation as near possible to given initial preference relation, under least-squares criterion and such that it does not introduce deep qualitative changes. other define linear extension between alternatives lotteries.

参考文章(10)
T. E. S. Raghavan, T. Parthasarathy, Some topics in two-person games ,(1971)
Kaushik Basu, Fuzzy Revealed Preference Theory Journal of Economic Theory. ,vol. 32, pp. 212- 227 ,(1984) , 10.1016/0022-0531(84)90051-6
Hiroshi Hashimoto, Convergence of powers of a fuzzy transitive matrix Fuzzy Sets and Systems. ,vol. 9, pp. 153- 160 ,(1983) , 10.1016/S0165-0114(83)80015-3
L.A. Zadeh, Similarity relations and fuzzy orderings Information Sciences. ,vol. 3, pp. 177- 200 ,(1971) , 10.1016/S0020-0255(71)80005-1
Michael G Thomason, Convergence of powers of a fuzzy matrix Journal of Mathematical Analysis and Applications. ,vol. 57, pp. 476- 480 ,(1977) , 10.1016/0022-247X(77)90274-8
James C Bezdek, J Douglas Harris, Fuzzy partitions and relations; an axiomatic basis for clustering Fuzzy Sets and Systems. ,vol. 1, pp. 111- 127 ,(1978) , 10.1016/0165-0114(78)90012-X
S.A. Orlovsky, Decision-making with a fuzzy preference relation Fuzzy Sets and Systems. ,vol. 1, pp. 155- 167 ,(1978) , 10.1016/0165-0114(78)90001-5
S.A. Orlovsky, On formalization of a general fuzzy mathematical problem Fuzzy Sets and Systems. ,vol. 3, pp. 311- 321 ,(1980) , 10.1016/0165-0114(80)90026-3
G. L. S. Shackle, Herbert A. Simon, Models of Man. Economica. ,vol. 24, pp. 382- ,(1957) , 10.2307/2228083