The fast intersection transform with applications to counting paths

作者: Thore Husfeldt , Mikko Koivisto , Petteri Kaski , Andreas Björklund

DOI:

关键词:

摘要: We present an algorithm for evaluating a linear ``intersection transform'' of function defined on the lattice subsets $n$-element set. In particular, constructs arithmetic circuit transform in ``down-closure time'' relative to support and evaluation domain. As application, we develop that, given as input digraph with $n$ vertices bounded integer weights at edges, counts paths by weight length $0\leq\ell\leq n-1$ time $O^*(\exp(n\cdot H(\ell/(2n))))$, where $H(p)=-p\log p-(1-p)\log(1-p)$, notation $O^*(\cdot)$ suppresses factor polynomial $n$.

参考文章(25)
Andreas Björklund, Thore Husfeldt, Petteri Kaski, Mikko Koivisto, Fourier meets möbius: fast subset convolution Proceedings of the thirty-ninth annual ACM symposium on Theory of computing - STOC '07. pp. 67- 74 ,(2007) , 10.1145/1250790.1250801
James W. Cooley, John W. Tukey, An algorithm for the machine calculation of complex Fourier series Mathematics of Computation. ,vol. 19, pp. 297- 301 ,(1965) , 10.1090/S0025-5718-1965-0178586-1
Andreas Björklund, Thore Husfeldt, Petteri Kaski, Mikko Koivisto, Trimmed Moebius Inversion and Graphs of Bounded Degree symposium on theoretical aspects of computer science. ,vol. 47, pp. 637- 654 ,(2010) , 10.1007/S00224-009-9185-7
Noga Alon, Raphael Yuster, Uri Zwick, Color-coding Journal of the ACM. ,vol. 42, pp. 844- 856 ,(1995) , 10.1145/210332.210337
Heidi Gebauer, On the number of hamilton cycles in bounded degree graphs analytic algorithmics and combinatorics. pp. 241- 248 ,(2008)
D.B. Shmoys, E.L. Lawler, Jan Karel Lenstra, A.H.G. Rinnooy Kan, The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization ,(1985)
David Eppstein, The Traveling Salesman Problem for Cubic Graphs Journal of Graph Algorithms and Applications. ,vol. 11, pp. 61- 81 ,(2007) , 10.7155/JGAA.00137
Ryan Williams, Finding paths of length k in O*(2^k) time arXiv: Data Structures and Algorithms. ,(2008)
Jan Karel Lenstra, David Shmoys, The Traveling Salesman Problem: A Computational Study ,(2007)