On extremal cacti with respect to the revised Szeged index

作者: Shujing Wang

DOI: 10.1016/J.DAM.2017.07.027

关键词:

摘要: Abstract The revised Szeged index of a graph G is defined as S z ∗ ( ) = ∑ e u v ∈ E n + 0 2 , where and are, respectively, the number vertices lying closer to vertex than equidistant . A cactus in which any two cycles have at most one common vertex. Let C k denote class all cacti with cycles. In this paper, sharp lower bound on established corresponding extremal determined. Furthermore, second minimal identified well.

参考文章(26)
Andrey A. Dobrynin, Roger Entringer, Ivan Gutman, Wiener Index of Trees: Theory and Applications Acta Applicandae Mathematicae. ,vol. 66, pp. 211- 249 ,(2001) , 10.1023/A:1010767517079
Tomaž Pisanski, Janez Žerovnik, Edge-contributions of some topological indices and arboreality of molecular graphs Ars Mathematica Contemporanea. ,vol. 2, pp. 49- 58 ,(2009) , 10.26493/1855-3974.68.51B
Xueliang Li, Mengmeng Liu, Bicyclic graphs with maximal revised Szeged index Discrete Applied Mathematics. ,vol. 161, pp. 2527- 2531 ,(2013) , 10.1016/J.DAM.2013.04.002
M. Aouchiche, P. Hansen, On a conjecture about the Szeged index The Journal of Combinatorics. ,vol. 31, pp. 1662- 1666 ,(2010) , 10.1016/J.EJC.2010.04.001
Lily Chen, Xueliang Li, Mengmeng Liu, The (revised) Szeged index and the Wiener index of a nonbipartite graph European Journal of Combinatorics. ,vol. 36, pp. 237- 246 ,(2014) , 10.1016/J.EJC.2013.07.019
Rundan Xing, Bo Zhou, On the revised Szeged index Discrete Applied Mathematics. ,vol. 159, pp. 69- 78 ,(2011) , 10.1016/J.DAM.2010.09.010
M.J. Nadjafi-Arani, H. Khodashenas, A.R. Ashrafi, On the differences between Szeged and Wiener indices of graphs Discrete Mathematics. ,vol. 311, pp. 2233- 2237 ,(2011) , 10.1016/J.DISC.2011.06.019
Sandi Klavžar, M.J. Nadjafi-Arani, Improved bounds on the difference between the Szeged index and the Wiener index of graphs European Journal of Combinatorics. ,vol. 39, pp. 148- 156 ,(2014) , 10.1016/J.EJC.2014.01.005
Tomaž Pisanski, Milan Randić, Use of the Szeged index and the revised Szeged index for measuring network bipartivity Discrete Applied Mathematics. ,vol. 158, pp. 1936- 1944 ,(2010) , 10.1016/J.DAM.2010.08.004
M.J. Nadjafi-Arani, H. Khodashenas, A.R. Ashrafi, Graphs whose Szeged and Wiener numbers differ by 4 and 5 Mathematical and Computer Modelling. ,vol. 55, pp. 1644- 1648 ,(2012) , 10.1016/J.MCM.2011.10.076