Asymptotic stability of solitary waves in generalized Gross--Neveu model

作者: Andrew Comech , Andrew Comech , Tuoc Van Phan , Atanas Stefanov

DOI:

关键词:

摘要: For the nonlinear Dirac equation in (1+1)D with scalar self-interaction (Gross--Neveu model), quintic and higher order nonlinearities (and within certain range of parameters), we prove that solitary wave solutions are asymptotically stable "even" subspace perturbations (to ignore translations eigenvalues $\pm 2\omega i$). The asymptotic stability is proved for initial data $H^1$. approach based on spectral information about linearization at waves which justify by numerical simulations. proof, develop theory linearized operators obtain appropriate estimates mixed Lebesgue spaces, without weights.

参考文章(16)
Tetsu Mizumachi, Asymptotic stability of small solitary waves to 1D nonlinear Schrödinger equations with potential Journal of Mathematics of Kyoto University. ,vol. 48, pp. 471- 497 ,(2008) , 10.1215/KJM/1250271380
Dmitry Pelinovsky, Survey on global existence in the nonlinear Dirac equations in one spatial dimension (Harmonic Analysis and Nonlinear Partial Differential Equations) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu. ,vol. 26, pp. 37- 50 ,(2011)
Nabile Boussaid, Scipio Cuccagna, On stability of standing waves of nonlinear Dirac equations Communications in Partial Differential Equations. ,vol. 37, pp. 1001- 1056 ,(2012) , 10.1080/03605302.2012.665973
Dmitry E. Pelinovsky, Atanas Stefanov, Asymptotic stability of small gap solitons in nonlinear Dirac equations Journal of Mathematical Physics. ,vol. 53, pp. 073705- 073705 ,(2012) , 10.1063/1.4731477
Thierry Cazenave, Luis Vazquez, Existence of localized solutions for a classical nonlinear Dirac field Communications in Mathematical Physics. ,vol. 105, pp. 35- 47 ,(1986) , 10.1007/BF01212340
S. Y. Lee, A. Gavrielides, Quantization of the localized solutions in two-dimensional field theories of massive fermions Physical Review D. ,vol. 12, pp. 3880- 3886 ,(1975) , 10.1103/PHYSREVD.12.3880
I. V. Barashenkov, D. E. Pelinovsky, E. V. Zemlyanaya, Vibrations and Oscillatory Instabilities of Gap Solitons Physical Review Letters. ,vol. 80, pp. 5117- 5120 ,(1998) , 10.1103/PHYSREVLETT.80.5117
Hart F Smith, Christopher D Sogge, Global strichartz estimates for nonthapping perturbations of the laplacian Communications in Partial Differential Equations. ,vol. 25, pp. 2171- 2183 ,(2000) , 10.1080/03605300008821581
Andrew Comech, Scipio Cuccagna, Dmitry E. Pelinovsky, NONLINEAR INSTABILITY OF A CRITICAL TRAVELING WAVE IN THE GENERALIZED KORTEWEG-DE VRIES EQUATION ∗ Siam Journal on Mathematical Analysis. ,vol. 39, pp. 1- 33 ,(2007) , 10.1137/060651501
J. Krieger, K. Nakanishi, W. Schlag, Global dynamics above the ground state energy for the one-dimensional NLKG equation Mathematische Zeitschrift. ,vol. 272, pp. 297- 316 ,(2012) , 10.1007/S00209-011-0934-3