Baxter equations and the Zamolodchikov model

作者: R.J. Baxter

DOI: 10.1016/0167-2789(86)90195-8

关键词:

摘要: Abstract A summary is given of the significance star-triangle, or Yang-Baxter, equations in solution two-dimensional statistical mechanical models. The extension to three-dimensional tetrahedron relations quoted and it shown how this can be used obtain partition function Zamolodchikov model for an n × ∞ lattice. = result differs from that recently obtained by Bazhanov Stroganov.

参考文章(42)
P.W. Kasteleyn, The statistics of dimers on a lattice Physica. ,vol. 27, pp. 1209- 1225 ,(1961) , 10.1016/0031-8914(61)90063-5
J.H.H. Perk, C.L. Schultz, Diagonalization of the transfer matrix of a nonintersecting string model Physica A: Statistical Mechanics and its Applications. ,vol. 122, pp. 50- 70 ,(1983) , 10.1016/0378-4371(83)90082-1
Michio Jimbo, Tetsuji Miwa, A solvable lattice model and related Rogers-Ramanujan type identities Physica D: Nonlinear Phenomena. ,vol. 15, pp. 335- 353 ,(1985) , 10.1016/S0167-2789(85)80003-8
A.A. Belavin, Dynamical symmetry of integrable quantum systems Nuclear Physics B. ,vol. 180, pp. 189- 200 ,(1981) , 10.1016/0550-3213(81)90414-4
R. J. Baxter, Eight-Vertex Model in Lattice Statistics Physical Review Letters. ,vol. 26, pp. 832- 833 ,(1971) , 10.1103/PHYSREVLETT.26.832
P. W. Kasteleyn, Dimer Statistics and Phase Transitions Journal of Mathematical Physics. ,vol. 4, pp. 287- 293 ,(1963) , 10.1063/1.1703953
Chungpeng Fan, F. Y. Wu, General Lattice Model of Phase Transitions Physical Review B. ,vol. 2, pp. 723- 733 ,(1970) , 10.1103/PHYSREVB.2.723
R.M.F. Houtappel, Order-disorder in hexagonal lattices Physica D: Nonlinear Phenomena. ,vol. 16, pp. 425- 455 ,(1950) , 10.1016/0031-8914(50)90130-3
M T Jaekel, J M Maillard, Symmetry Relations in Exactly Soluble Models Journal of Physics A. ,vol. 15, pp. 1309- 1325 ,(1982) , 10.1088/0305-4470/15/4/031