Enlargement of Monotone Operators with Applications to Variational Inequalities

作者: Regina S. Burachik , Alfredo N. Iusem , B. F. Svaiter

DOI: 10.1023/A:1008615624787

关键词:

摘要: Given a point-to-set operator T, we introduce the Te defined as Te(x)= {u: 〈 u − v, x y 〉 ≥ −e for all ɛ Rn, v T(y)}. When T is maximal monotone inherits most properties of e-subdifferential, e.g. it bounded on sets, Te(x) contains image through sufficiently small ball around x, etc. We prove these and other relevant Te, apply to generate an inexact proximal point method with generalized distances variational inequalities, whose subproblems consist solving problems form 0 He(x), while exact are H(x). If ek coefficient used in kth iteration ek's summable, then sequence generated by algorithm still convergent solution original problem. well behaved enough, set each subproblem solution, so can be finitely solved.

参考文章(19)
Sai͏̈d Kabbadj, Méthodes proximales entropiques Montpellier 2. ,(1994)
G. M. Korpelevich, The extragradient method for finding saddle points and other problems Matecon. ,vol. 12, pp. 747- 756 ,(1976)
Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal, Convex analysis and minimization algorithms ,(1993)
A. R. De Pierro, A. N. Iusem, A relaxed version of Bregman's method for convex programming Journal of Optimization Theory and Applications. ,vol. 51, pp. 421- 440 ,(1986) , 10.1007/BF00940283
Alfredo N. Iusem, B. F. Svaiter, Marc Teboulle, Entropy-like proximal methods in convex programming Mathematics of Operations Research. ,vol. 19, pp. 790- 814 ,(1994) , 10.1287/MOOR.19.4.790
R. Tyrrell Rockafellar, Monotone Operators and the Proximal Point Algorithm SIAM Journal on Control and Optimization. ,vol. 14, pp. 877- 898 ,(1976) , 10.1137/0314056
Krzysztof C. Kiwiel, Proximal Minimization Methods with Generalized Bregman Functions Siam Journal on Control and Optimization. ,vol. 35, pp. 1142- 1168 ,(1997) , 10.1137/S0363012995281742