Strongly Convergent Algorithms for Variational Inequality Problem Over the Set of Solutions the Equilibrium Problems

作者: Vladimir V. Semenov

DOI: 10.1007/978-3-319-03146-0_10

关键词:

摘要: This chapter deals with a variational inequality problem over the set of solutions equilibrium or system problems in real Hilbert space. Several new iterative algorithms are proposed. Strong convergence theorems for proved. The presence computational errors without traditional summability conditions also studied. To this aim, we use Mainge’s techniques analysis non–Fejerian processes (Set–Valued Analysis. 16, 899–912, 2008).

参考文章(17)
W Oettli, E. Blum, From optimization and variational inequalities to equilibrium problems Math. Student. ,vol. 63, pp. 123- 145 ,(1994)
Patrick L. Combettes, Heinz H. Bauschke, Convex Analysis and Monotone Operator Theory in Hilbert Spaces ,(2011)
G. M. Korpelevich, The extragradient method for finding saddle points and other problems Matecon. ,vol. 12, pp. 747- 756 ,(1976)
Heinz H. Bauschke, Patrick L. Combettes, Simeon Reich, The asymptotic behavior of the composition of two resolvents Nonlinear Analysis-theory Methods & Applications. ,vol. 60, pp. 283- 301 ,(2005) , 10.1016/J.NA.2004.07.054
Heinz H. Bauschke, The Approximation of Fixed Points of Compositions of Nonexpansive Mappings in Hilbert Space Journal of Mathematical Analysis and Applications. ,vol. 202, pp. 150- 159 ,(1996) , 10.1006/JMAA.1996.0308
E. A. Nurminski, The use of additional diminishing disturbances in Fejer models of iterative algorithms Computational Mathematics and Mathematical Physics. ,vol. 48, pp. 2154- 2161 ,(2008) , 10.1134/S0965542508120051
S. I. Lyashko, V. V. Semenov, T. A. Voitova, Low-cost modification of Korpelevich's methods for monotone equilibrium problems Cybernetics and Systems Analysis. ,vol. 47, pp. 631- 639 ,(2011) , 10.1007/S10559-011-9343-1
D. Quoc Tran, M. Le Dung, Van Hien Nguyen, Extragradient algorithms extended to equilibrium problems Optimization. ,vol. 57, pp. 749- 776 ,(2008) , 10.1080/02331930601122876