Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

作者: Xiuping Zhu , Marta C. Hatzell , Roland D. Cusick , Bruce E. Logan

DOI: 10.1016/J.ELECOM.2013.03.010

关键词:

摘要: Abstract A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) salinity gradients (NaCl solutions representative seawater river water). bipolar membrane (BPM) placed next the anode prevent Cl − contamination acidification anolyte, protons for HCl recovery. 5-cell paired (RED) stack provided electrical required overcome BPM over-potential (0.3–0.6 V), making overall process spontaneous. The MRCC reactor produced electricity (908 mW/m 2 ) as well concentrated acidic alkaline solutions, therefore did not require an external power supply. After fed-batch cycle, pHs chemical product were 1.65 ± 0.04 11.98 ± 0.10, due production 1.35 ± 0.13 mmol acid, 0.59 ± 0.14 mmol alkali. acid- alkali-production efficiencies based on generated current 58 ± 3% 25 ± 3%. These results demonstrated proof-of-concept only renewable sources.

参考文章(18)
Bruce E. Logan, Bert Hamelers, René Rozendal, Uwe Schröder, Jürg Keller, Stefano Freguia, Peter Aelterman, Willy Verstraete, Korneel Rabaey, Microbial Fuel Cells: Methodology and Technology† Environmental Science & Technology. ,vol. 40, pp. 5181- 5192 ,(2006) , 10.1021/ES0605016
Swades K Chaudhuri, Derek R Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells Nature Biotechnology. ,vol. 21, pp. 1229- 1232 ,(2003) , 10.1038/NBT867
Y. Kim, B. E. Logan, Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells Proceedings of the National Academy of Sciences of the United States of America. ,vol. 108, pp. 16176- 16181 ,(2011) , 10.1073/PNAS.1106335108
J. Veerman, M. Saakes, S. J. Metz, G. J. Harmsen, Reverse electrodialysis: evaluation of suitable electrode systems Journal of Applied Electrochemistry. ,vol. 40, pp. 1461- 1474 ,(2010) , 10.1007/S10800-010-0124-8
Korneel Rabaey, Willy Verstraete, Microbial fuel cells: novel biotechnology for energy generation Trends in Biotechnology. ,vol. 23, pp. 291- 298 ,(2005) , 10.1016/J.TIBTECH.2005.04.008
Jan W. Post, Hubertus V. M. Hamelers, Cees J. N. Buisman, Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. Environmental Science & Technology. ,vol. 42, pp. 5785- 5790 ,(2008) , 10.1021/ES8004317
Xiuping Zhu, Justin C. Tokash, Yiying Hong, Bruce E. Logan, Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials. Bioelectrochemistry. ,vol. 90, pp. 30- 35 ,(2013) , 10.1016/J.BIOELECHEM.2012.10.004
J. Veerman, R.M. de Jong, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density Journal of Membrane Science. ,vol. 343, pp. 7- 15 ,(2009) , 10.1016/J.MEMSCI.2009.05.047
Joanna Kuleszo, Carolien Kroeze, Jan Post, Balázs M. Fekete, The potential of blue energy for reducing emissions of CO2 and non-CO2 greenhouse gases Journal of Integrative Environmental Sciences. ,vol. 7, pp. 89- 96 ,(2010) , 10.1080/19438151003680850
Xiuping Zhu, Jinren Ni, Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell Electrochemistry Communications. ,vol. 11, pp. 274- 277 ,(2009) , 10.1016/J.ELECOM.2008.11.023