Classification of six‐vertex‐type solutions of the colored Yang–Baxter equation

作者: Xiao‐dong Sun , Shi‐kun Wang , Ke Wu

DOI: 10.1063/1.531234

关键词:

摘要: In this paper, symmetries and spectral‐dependent six‐vertex‐type solutions of the colored Yang–Baxter equation are discussed. It is shown that each nondegenerate solution equivalent to one six basic up five transformations all can be classified into two types called Baxter type free‐Fermion type.

参考文章(17)
Chungpeng Fan, F. Y. Wu, General Lattice Model of Phase Transitions Physical Review B. ,vol. 2, pp. 723- 733 ,(1970) , 10.1103/PHYSREVB.2.723
K. Sogo, M. Uchinami, Y. Akutsu, M. Wadati, Classification of Exactly Solvable Two-Component Models Progress of Theoretical Physics. ,vol. 68, pp. 508- 526 ,(1982) , 10.1143/PTP.68.508
V. V. Bazhanov, Yu. G. Stroganov, Hidden symmetry of free fermion model. I. Triangle equation and symmetric parametrization Theoretical and Mathematical Physics. ,vol. 62, pp. 253- 260 ,(1985) , 10.1007/BF01018266
A J Bracken, M D Gould, Yao-Zhong Zhang, G W Delius, Solutions of the Quantum Yang-Baxter Equation with Extra Nonadditive Parameters Journal of Physics A. ,vol. 27, pp. 6551- 6561 ,(1994) , 10.1088/0305-4470/27/19/025
Jun Murakami, A state model for the multi-variable alexander polynomial Pacific Journal of Mathematics. ,vol. 157, pp. 109- 135 ,(1993) , 10.2140/PJM.1993.157.109
B.U. Felderhof, Diagonalization of the transfer matrix of the free-fermion model. III Physica D: Nonlinear Phenomena. ,vol. 66, pp. 279- 297 ,(1973) , 10.1016/0031-8914(73)90298-X
V. G. Turaev, The Yang-Baxter equation and invariants of links Inventiones Mathematicae. ,vol. 92, pp. 527- 553 ,(1988) , 10.1007/BF01393746
Mo-Lin Ge, Kang Xue, Trigonometric Yang-Baxterization of coloured R-matrix Journal of Physics A. ,vol. 26, pp. 281- 291 ,(1993) , 10.1088/0305-4470/26/2/015