Stability and synchronization criteria for fractional order competitive neural networks with time delays: An asymptotic expansion of Mittag Leffler function

作者: A. Pratap , R. Raja , Jinde Cao , G. Rajchakit , Habib M. Fardoun

DOI: 10.1016/J.JFRANKLIN.2019.01.017

关键词:

摘要: … to the equilibrium point of the system is global asymptotic stable with the help of suitable Lyapunov functional approach and asymptotic expansion property of Mittag-Leffler function. …

参考文章(48)
Wong, Zhao, Exponential asymptotics of the Mittag-Leffler function Constructive Approximation. ,vol. 18, pp. 355- 385 ,(2002) , 10.1007/S00365-001-0019-3
Zhao, Wong, Exponential Asymptotics of the Mittag—Leffler Function Constructive Approximation. ,vol. 18, pp. 355- 385 ,(2002) , 10.1007/S00365-001-0019-3
Ivanka Stamova, Trayan Stamov, Xiaodi Li, Global exponential stability of a class of impulsive cellular neural networks with supremums International Journal of Adaptive Control and Signal Processing. ,vol. 28, pp. 1227- 1239 ,(2014) , 10.1002/ACS.2440
Fei Wang, Yongqing Yang, Xianyun Xu, Li Li, Global asymptotic stability of impulsive fractional-order BAM neural networks with time delay Neural Computing and Applications. ,vol. 28, pp. 345- 352 ,(2017) , 10.1007/S00521-015-2063-0
Xiaodi Li, R. Rakkiyappan, N. Sakthivel, Non‐Fragile Synchronization Control For Markovian Jumping Complex Dynamical Networks With Probabilistic Time‐Varying Coupling Delays Asian Journal of Control. ,vol. 17, pp. 1678- 1695 ,(2015) , 10.1002/ASJC.984
P. Arena, R. Caponetto, L. Fortuna, D. Porto, Bifurcation and Chaos in Noninteger Order Cellular Neural Networks International Journal of Bifurcation and Chaos. ,vol. 08, pp. 1527- 1539 ,(1998) , 10.1142/S0218127498001170
Louis M. Pecora, Thomas L. Carroll, Synchronization in chaotic systems Physical Review Letters. ,vol. 64, pp. 821- 824 ,(1990) , 10.1103/PHYSREVLETT.64.821