Phase-Field Models for Microstructure Evolution

作者: Long-Qing Chen

DOI: 10.1146/ANNUREV.MATSCI.32.112001.132041

关键词:

摘要: … review of the recent applications of the phase-field method. … of dislocations may promote the nucleation of a new phase (… effect of dislocations on the spinodally decomposed two-phase …

参考文章(173)
J. S. Langer, Models of Pattern Formation in First-Order Phase Transitions Directions in Concensed Matter Physics: Memorial Volume in Honor of Shang-Keng Ma. Edited by GRINSTEIN S ET AL. Published by World Scientific Publishing Co. Pte. Ltd. ,vol. 1, pp. 165- 186 ,(1986) , 10.1142/9789814415309_0005
J. W. Cahn, S. C. Han, G. B. McFadden, Anisotropy of Interfaces in an Ordered HCP Binary Alloy Journal of Statistical Physics. ,vol. 95, pp. 1337- 1360 ,(1998) , 10.1023/A:1004583324097
James A Warren, Ryo Kobayashi, W Craig Carter, Modeling grain boundaries using a phase-field technique Journal of Crystal Growth. ,vol. 211, pp. 18- 20 ,(2000) , 10.1016/S0022-0248(99)00856-8
Gunduz Caginalp, Xinfu Chen, Phase field equations in the singular limit of sharp interface problems Institute for Mathematics and Its Applications. ,vol. 43, pp. 1- 27 ,(1992) , 10.1007/978-1-4613-9211-8_1
S. Semenovskaya, Yimei Zhu, M. Suenaga, A. G. Khachaturyan, Twin and tweed microstructures in YBa2Cu3O7- delta doped by trivalent cations. Physical Review B. ,vol. 47, pp. 12182- 12189 ,(1993) , 10.1103/PHYSREVB.47.12182
G.B. McFadden, A.A. Wheeler, D.M. Anderson, Thin interface asymptotics for an energy/entropy approach to phase-field models with unequal conductivities Physica D: Nonlinear Phenomena. ,vol. 144, pp. 154- 168 ,(2000) , 10.1016/S0167-2789(00)00064-6
Klaus Kassner, Chaouqi Misbah, Judith Müller, Jens Kappey, Peter Kohlert, Phase-field modeling of stress-induced instabilities. Physical Review E. ,vol. 63, pp. 036117- ,(2001) , 10.1103/PHYSREVE.63.036117
François Léonard, Rashmi C. Desai, Spinodal decomposition and dislocation lines in thin films and bulk materials Physical Review B. ,vol. 58, pp. 8277- 8288 ,(1998) , 10.1103/PHYSREVB.58.8277