A Semicausal Model for Recursive Filtering of Two-Dimensional Images

作者: Jain

DOI: 10.1109/TC.1977.1674844

关键词:

摘要: A two-dimensional discrete stochastic model for representing images is developed. This representation has lower mean square error, compared to a standard autoregressive Markov representation. Application of the linear filtering degraded by white noise leads scalar recursive equations requiring only 0(N2log 2 N) computations N x images. The filter algorithm hybrid where image transformed along one dimension and spatially filtered, recursively, in other. Examples on 255 X are given.

参考文章(26)
Gregory M Robbins, Image restoration for a class of linear spatially-variant degradations Pattern Recognition. ,vol. 2, pp. 91- 103 ,(1970) , 10.1016/0031-3203(70)90005-1
E.L. Hall, A comparison of computations for spatial frequency filtering Proceedings of the IEEE. ,vol. 60, pp. 887- 891 ,(1972) , 10.1109/PROC.1972.8789
A. Habibi, Two-dimensional Bayesian estimate of images Proceedings of the IEEE. ,vol. 60, pp. 878- 883 ,(1972) , 10.1109/PROC.1972.8787
L. E. Franks, A Model for the Random Video Process Bell System Technical Journal. ,vol. 45, pp. 609- 630 ,(1966) , 10.1002/J.1538-7305.1966.TB01046.X
W.K. Pratt, Generalized Wiener Filtering Computation Techniques IEEE Transactions on Computers. ,vol. C-21, pp. 636- 641 ,(1972) , 10.1109/T-C.1972.223567
A. Jain, A Fast Karhunen-Loeve Transform for a Class of Random Processes IEEE Transactions on Communications. ,vol. 24, pp. 1023- 1029 ,(1976) , 10.1109/TCOM.1976.1093409
G.M. Robbins, T.S. Huang, Inverse filtering for linear shift-variant imaging systems Proceedings of the IEEE. ,vol. 60, pp. 862- 872 ,(1972) , 10.1109/PROC.1972.8785