Nonlinear Approximation Rates and Besov Regularity for Elliptic PDEs on Polyhedral Domains

作者: Markus Hansen

DOI: 10.1007/S10208-014-9224-X

关键词:

摘要: We investigate the Besov regularity for solutions of elliptic PDEs. This is based on regularity results in Babuska–Kondratiev spaces. Following the argument of Dahlke and DeVore, we …

参考文章(27)
Stephan Dahlke, Winfried Sickel, Besov Regularity for the Poisson Equation in Smooth and Polyhedral Cones Springer, New York, NY. pp. 123- 145 ,(2009) , 10.1007/978-0-387-85650-6_7
V. Kozlov, V. Maz’ya, J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities Mathematical Surveys and Monographs. ,vol. 52, ,(2002) , 10.1090/SURV/052
Hans Triebel, Theory of Function Spaces III ,(2008)
Function Spaces on Domains Springer, Basel. pp. 188- 211 ,(1983) , 10.1007/978-3-0346-0416-1_3
Yves Meyer, Wavelets and Operators ,(1993)
Hans Triebel, Theory of function spaces ,(1983)
Benjamin Muckenhoupt, Hardy's inequality with weights Studia Mathematica. ,vol. 44, pp. 31- 38 ,(1972) , 10.4064/SM-44-1-31-38
D. Jerison, C.E. Kenig, The Inhomogeneous Dirichlet Problem in Lipschitz Domains Journal of Functional Analysis. ,vol. 130, pp. 161- 219 ,(1995) , 10.1006/JFAN.1995.1067