A new AdS/CFT correspondence

作者: Horatiu Stefan Nastase , Warren Siegel

DOI: 10.1088/1126-6708/2000/10/040

关键词:

摘要: We consider a geometric zero-radius limit for strings on AdS5 × S5, where the Anti-de Sitter hyperboloid becomes projective lightcone. In this fifth dimension non dynamical, yielding different ``holographic'' interpretation than usual ``bulk to boundary'' one. When quantized random lattice, coordinate acts as new kind of Schwinger parameter, producing Feynman rules with normal propagators at tree level: example, in bosonic case ordinary massless 4 theory is obtained. superstring we obtain new, manifestly = supersymmetric super Yang-Mills. These gluons are also from those AdS/CFT correspondence: they ``partons'' that make up ``hadrons'' open and closed familiar QCD string picture. Thus, their coupling gYM rank N ``color'' gauge group ``flavor'' string. As result perturbation expansions radius, coupling, 1/N.

参考文章(16)
Joseph J. Atick, Edward Witten, The Hagedorn transition and the number of degrees of freedom of string theory Nuclear Physics B. ,vol. 310, pp. 291- 334 ,(1988) , 10.1016/0550-3213(88)90151-4
Warren Siegel, M Roček, None, On off-shell supermultiplets Physics Letters B. ,vol. 105, pp. 275- 277 ,(1981) , 10.1016/0370-2693(81)90887-X
Michael R. Douglas, Stephen H. Shenker, Strings in less than one dimension Nuclear Physics B. ,vol. 335, pp. 635- 654 ,(1990) , 10.1016/0550-3213(90)90522-F
W. Siegel, Covariantly second-quantized string Physics Letters B. ,vol. 142, pp. 276- 280 ,(1984) , 10.1016/0370-2693(84)91197-3
H. J. Bhabha, The wave equation in conformal space Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 32, pp. 622- 631 ,(1936) , 10.1017/S0305004100019344
G. Veneziano, Construction of a crossing - symmetric, Regge behaved amplitude for linearly rising trajectories Nuovo Cimento Della Societa Italiana Di Fisica A-nuclei Particles and Fields. ,vol. 57, pp. 190- 197 ,(1968) , 10.1007/BF02824451
Robert Marnelius, Bengt Nilsson, Manifestly conformally covariant field equations and a geometrical understanding of mass Physical Review D. ,vol. 22, pp. 830- 838 ,(1980) , 10.1103/PHYSREVD.22.830
M. F. Atiyah, R. S. Ward, Instantons and algebraic geometry Communications in Mathematical Physics. ,vol. 55, pp. 117- 124 ,(1977) , 10.1007/BF01626514
G. Parisi, N. Sourlas, Random Magnetic Fields, Supersymmetry, and Negative Dimensions Physical Review Letters. ,vol. 43, pp. 744- 745 ,(1979) , 10.1103/PHYSREVLETT.43.744