Lie symmetry analysis and invariant solutions of $$\varvec{(3+1)}$$ ( 3 + 1 ) -dimensional Calogero–Bogoyavlenskii–Schiff equation

作者: Vishakha Jadaun , Sachin Kumar

DOI: 10.1007/S11071-018-4196-Z

关键词:

摘要: It is shown that the novel Lie group of transformations method a competent and prominent tool in solving nonlinear partial differential equations(PDEs) mathematical physics. analysis used to carry out similarity reduction exact solutions (3 + 1)-dimensional Calogero-Bogoyavlenskii-Schiff (CBS) equation. This research deals with CBS We have obtained infinitesimal generators, commutator table algebra, symmetry for For different reduced equation into new (2 equations again using these PDEs are various ordinary equations(ODEs).

参考文章(23)
Xing-Biao Hu, Dao-Liu Wang, Hon-Wah Tam, Wei-Min Xue, SOLITON SOLUTIONS TO THE JIMBO-MIWA EQUATIONS AND THE FORDY-GIBBONS-JIMBO-MIWA EQUATION Physics Letters A. ,vol. 262, pp. 310- 320 ,(1999) , 10.1016/S0375-9601(99)00659-3
GM Moatimid, Rehab M El-Shiekh, Abdul-Ghani AAH Al-Nowehy, None, Exact solutions for Calogero-Bogoyavlenskii-Schiff equation using symmetry method Applied Mathematics and Computation. ,vol. 220, pp. 455- 462 ,(2013) , 10.1016/J.AMC.2013.06.034
X.Y. Tang, Z.F. Liang, Variable separation solutions for the (3 + 1)-dimensional Jimbo-Miwa equation Physics Letters A. ,vol. 351, pp. 398- 402 ,(2006) , 10.1016/J.PHYSLETA.2005.11.035
Oleg Bogoyavlenskij, Restricted Lie point symmetries and reductions for ideal magnetohydrodynamics equilibria Journal of Engineering Mathematics. ,vol. 66, pp. 141- 152 ,(2010) , 10.1007/S10665-009-9326-7
Song-Ju Yu, Kouichi Toda, Narimasa Sasa, Takeshi Fukuyama, N soliton solutions to the Bogoyavlenskii-Schiff equation and a quest for the soliton solution in (3 1) dimensions Journal of Physics A. ,vol. 31, pp. 3337- 3347 ,(1998) , 10.1088/0305-4470/31/14/018
Abdul-Majid Wazwaz, Multiple-soliton solutions for the Calogero–Bogoyavlenskii–Schiff, Jimbo–Miwa and YTSF equations Applied Mathematics and Computation. ,vol. 203, pp. 592- 597 ,(2008) , 10.1016/J.AMC.2008.05.004
Tadashi Kobayashi, The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients Symmetry, Integrability and Geometry: Methods and Applications. ,vol. 2, pp. 063- ,(2006) , 10.3842/SIGMA.2006.063
Andrew G Johnpillai, Abdul Hamid Kara, Anjan Biswas, None, Symmetry reduction, exact group-invariant solutions and conservation laws of the Benjamin–Bona–Mahoney equation Applied Mathematics Letters. ,vol. 26, pp. 376- 381 ,(2013) , 10.1016/J.AML.2012.10.012
Dan Wang, Weiwei Sun, Cuicui Kong, Hongqing Zhang, New extended rational expansion method and exact solutions of Boussinesq equation and Jimbo–Miwa equations Applied Mathematics and Computation. ,vol. 189, pp. 878- 886 ,(2007) , 10.1016/J.AMC.2006.11.142
Kouichi Toda, Song-Ju Yu, The investigation into the Schwarz–Korteweg–de Vries equation and the Schwarz derivative in (2+1) dimensions Journal of Mathematical Physics. ,vol. 41, pp. 4747- 4751 ,(2000) , 10.1063/1.533374