The differential correction algorithm for rational L∞ approximation

作者: M. J. D. Powell , I. Barrodale , F. D. K. Roberts

DOI: 10.1007/BFB0069455

关键词:

摘要: Given a set of function values f(xt) (t=1,2,...,N), we consider the problem calculating rational R(x)=P(x)/Q(x) that minimizes quantity $$\begin{gathered}\max |f(xt) - R(xt)|, \hfill \\t \\\end{gathered}$$ where P(x) and Q(x) are polynomials prescribed degrees. To solve this Cheney Loeb [2] proposed "differential correction algorithm", ODC say, but in subsequent paper [3] they modified their algorithm, now DC is nearly always used place ODC. The purpose to direct attention back original because practice seems be much better.

参考文章(3)
E. W. Cheney, H. L. Loeb, On rational Chebyshev approximation Numerische Mathematik. ,vol. 4, pp. 124- 127 ,(1962) , 10.1007/BF01386303
E. W. Cheney, H. L. Loeb, Two new algorithms for rational approximation Numerische Mathematik. ,vol. 3, pp. 72- 75 ,(1961) , 10.1007/BF01386002
Elliott Ward Cheney, Introduction to approximation theory ,(1966)