Soft triaxial rotovibrational motion in the vicinity ofγ=π∕6

作者: Lorenzo Fortunato

DOI: 10.1103/PHYSREVC.70.011302

关键词:

摘要: A solution of the Bohr collective Hamiltonian for {beta}-soft, {gamma}-soft triaxial rotor with {gamma}{approx}{pi}/6 is presented making use a harmonic potential in {gamma} and Coulomb-like Kratzer-like potentials {beta}. It shown that, while {gamma}-angular part present case gives rise to straightforward extension rigid energy which an additive term appears, inclusion {beta} results instead nontrivial expression spectrum. The negative anharmonicities levels respect simple model are qualitative agreement general trends experimental data.

参考文章(15)
F. Iachello, Dynamic Symmetries at the Critical Point Physical Review Letters. ,vol. 85, pp. 3580- 3583 ,(2000) , 10.1103/PHYSREVLETT.85.3580
A.S. Davydov, G.F. Filippov, Rotational states in even atomic nuclei Nuclear Physics. ,vol. 8, pp. 237- 249 ,(1958) , 10.1016/0029-5582(58)90153-6
A.S. Davydov, V.S. Rostovsky, Relative transition probabilities between rotational levels of non-axial nuclei Nuclear Physics. ,vol. 12, pp. 58- 68 ,(1959) , 10.1016/0029-5582(59)90127-0
J. Meyer-Ter-Vehn, Collective model description of transitional odd-A nuclei Nuclear Physics A. ,vol. 249, pp. 111- 140 ,(1975) , 10.1016/0375-9474(75)90095-0
A.S. Davydov, A.A. Chaban, Rotation-vibration interaction in non-axial even nuclei Nuclear Physics. ,vol. 20, pp. 499- 508 ,(1960) , 10.1016/0029-5582(60)90191-7
Dennis Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, Z(5): critical point symmetry for the prolate to oblate nuclear shape phase transition Physics Letters B. ,vol. 588, pp. 172- 179 ,(2004) , 10.1016/J.PHYSLETB.2004.03.029
R. V. Jolos, Phase transitions between axisymmetric and nonaxial nuclear shapes Physics of Atomic Nuclei. ,vol. 67, pp. 931- 936 ,(2004) , 10.1134/1.1755385