A neural dynamics architecture for grasping that integrates perception and movement generation and enables on-line updating.

作者: Guido Knips , Stephan KU Zibner , Hendrik Reimann , Irina Popova , Gregor Schöner

DOI: 10.1109/IROS.2014.6942627

关键词:

摘要:

参考文章(25)
Stephan K. U. Zibner, Christian Faubel, Gregor Schoner, Making a robotic scene representation accessible to feature and label queries international conference on development and learning. ,vol. 2, pp. 1- 7 ,(2011) , 10.1109/DEVLRN.2011.6037360
Marianna Madry, Dan Song, Danica Kragic, From object categories to grasp transfer using probabilistic reasoning international conference on robotics and automation. pp. 1716- 1723 ,(2012) , 10.1109/ICRA.2012.6225052
Shun-ichi Amari, Dynamics of pattern formation in lateral-inhibition type neural fields Biological Cybernetics. ,vol. 27, pp. 77- 87 ,(1977) , 10.1007/BF00337259
Michel Desmurget, Scott Grafton, Forward modeling allows feedback control for fast reaching movements Trends in Cognitive Sciences. ,vol. 4, pp. 423- 431 ,(2000) , 10.1016/S1364-6613(00)01537-0
Yulia Sandamirskaya, Stephan KU Zibner, Sebastian Schneegans, Gregor Schöner, None, Using Dynamic Field Theory to extend the embodiment stance toward higher cognition New Ideas in Psychology. ,vol. 31, pp. 322- 339 ,(2013) , 10.1016/J.NEWIDEAPSYCH.2013.01.002
Stephan KU Zibner, Christian Faubel, Ioannis Iossifidis, Gregor Schöner, None, Dynamic Neural Fields as Building Blocks of a Cortex-Inspired Architecture for Robotic Scene Representation IEEE Transactions on Autonomous Mental Development. ,vol. 3, pp. 74- 91 ,(2011) , 10.1109/TAMD.2011.2109714
Hendrik Reimann, Ioannis Iossifidis, Gregor Schoner, Autonomous movement generation for manipulators with multiple simultaneous constraints using the attractor dynamics approach international conference on robotics and automation. pp. 5470- 5477 ,(2011) , 10.1109/ICRA.2011.5980184
L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid scene analysis IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 20, pp. 1254- 1259 ,(1998) , 10.1109/34.730558