Finite-difference-based lattice Boltzmann model for dense binary mixtures

作者: Zhaoli Guo , T. S. Zhao

DOI: 10.1103/PHYSREVE.71.026701

关键词:

摘要: We propose a finite-difference-based lattice Boltzmann model for dense binary mixtures based on the Enskog theory. The is applicable to mixture composed of two fluids with different shear viscosities. macroscopic hydrodynamic and diffusion equations are derived from through Chapmann-Enskog procedure. also validated numerically.

参考文章(62)
T. G. Cowling, Sydney Chapman, David Park, The mathematical theory of non-uniform gases ,(1939)
Shiyi Chen, Gary D. Doolen, LATTICE BOLTZMANN METHOD FOR FLUID FLOWS Annual Review of Fluid Mechanics. ,vol. 30, pp. 329- 364 ,(1998) , 10.1146/ANNUREV.FLUID.30.1.329
Andrew K. Gunstensen, Daniel H. Rothman, Stéphane Zaleski, Gianluigi Zanetti, Lattice Boltzmann model of immiscible fluids Physical Review A. ,vol. 43, pp. 4320- 4327 ,(1991) , 10.1103/PHYSREVA.43.4320
Daniel H. Rothman, Jeffrey M. Keller, Immiscible cellular-automaton fluids Journal of Statistical Physics. ,vol. 52, pp. 1119- 1127 ,(1988) , 10.1007/BF01019743
Xiaowen Shan, Gary Doolen, Multi-component lattice-Boltzmann model with interparticle interaction arXiv: Cellular Automata and Lattice Gases. ,(1995) , 10.1007/BF02179985
Xiaowen Shan, Gary Doolen, Diffusion in a multicomponent lattice Boltzmann equation model Physical Review E. ,vol. 54, pp. 3614- 3620 ,(1996) , 10.1103/PHYSREVE.54.3614
Michael R. Swift, W. R. Osborn, J. M. Yeomans, Lattice Boltzmann Simulation of Nonideal Fluids Physical Review Letters. ,vol. 75, pp. 830- 833 ,(1995) , 10.1103/PHYSREVLETT.75.830
Michael R. Swift, E. Orlandini, W. R. Osborn, J. M. Yeomans, Lattice Boltzmann simulations of liquid-gas and binary fluid systems Physical Review E. ,vol. 54, pp. 5041- 5052 ,(1996) , 10.1103/PHYSREVE.54.5041
Li-Shi Luo, Sharath S. Girimaji, Lattice Boltzmann model for binary mixtures. Physical Review E. ,vol. 66, pp. 035301- ,(2002) , 10.1103/PHYSREVE.66.035301