A Load Balancing Algorithm for Resource Allocation in Cloud Computing

作者: Seyedmajid Mousavi , Amir Mosavi , Annamária R. Varkonyi-Koczy

DOI: 10.1007/978-3-319-67459-9_36

关键词:

摘要: Utilizing dynamic resource allocation for load balancing is considered as an important optimization process of task scheduling in cloud computing. A poor policy may overload certain virtual machines while remaining are idle. Accordingly, this paper proposes a hybrid algorithm with combination Teaching-Learning-Based Optimization (TLBO) and Grey Wolves algorithms (GWO), which can well contribute maximizing the throughput using balanced across overcome problem trap into local optimum. The benchmarked on eleven test functions comparative study conducted to verify results particle swarm (PSO), Biogeography-based (BBO), GWO. To evaluate performance proposed balancing, simulated experimental presented.

参考文章(20)
L.I. Wong, M.H. Sulaiman, M.R. Mohamed, M.S. Hong, Grey Wolf Optimizer for solving economic dispatch problems ieee international conference on power and energy. pp. 150- 154 ,(2014) , 10.1109/PECON.2014.7062431
Dimitris Bertsimas, Shubham Gupta, Guglielmo Lulli, Dynamic resource allocation: A flexible and tractable modeling framework European Journal of Operational Research. ,vol. 236, pp. 14- 26 ,(2014) , 10.1016/J.EJOR.2013.10.063
Dhinesh Babu LD, P Venkata Krishna, None, Honey bee behavior inspired load balancing of tasks in cloud computing environments soft computing. ,vol. 13, pp. 2292- 2303 ,(2013) , 10.1016/J.ASOC.2013.01.025
Amir Mosavi, Application of data mining in multiobjective optimization problems International Journal for Simulation and Multidisciplinary Design Optimization. ,vol. 5, ,(2014) , 10.1051/SMDO/2013002
Momin Jamil, Xin She Yang, A literature survey of benchmark functions for global optimisation problems International Journal of Mathematical Modelling and Numerical Optimisation. ,vol. 4, pp. 150- 194 ,(2013) , 10.1504/IJMMNO.2013.055204
N. Malarvizhi, V. Rhymend Uthariaraj, Hierarchical load balancing scheme for computational intensive jobs in Grid computing environment international conference on advanced computing. pp. 97- 104 ,(2009) , 10.1109/ICADVC.2009.5378268
B. Yagoubi, Y. Slimani, Task Load Balancing Strategy for Grid Computing Journal of Computer Science. ,vol. 3, pp. 186- 194 ,(2007) , 10.3844/JCSSP.2007.186.194
D. Simon, Biogeography-Based Optimization IEEE Transactions on Evolutionary Computation. ,vol. 12, pp. 702- 713 ,(2008) , 10.1109/TEVC.2008.919004
Seyedali Mirjalili, Shahrzad Saremi, Seyed Mohammad Mirjalili, Leandro dos S. Coelho, Multi-objective grey wolf optimizer Expert Systems With Applications. ,vol. 47, pp. 106- 119 ,(2016) , 10.1016/J.ESWA.2015.10.039