High rate copper and energy recovery in microbial fuel cells

作者: Pau Rodenas Motos , Annemiek ter Heijne , Renata van der Weijden , Michel Saakes , Cees J. N. Buisman

DOI: 10.3389/FMICB.2015.00527

关键词:

摘要: Bioelectrochemical Systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite upscaling from laboratory to industrial size is that high current and power densities can be produced. In this study we report copper sulfate stream (2 g L-1 Cu2+) using scale BES at rate. To achieve this, used novel cell configuration reduce internal voltage losses system. At anode, electroactive microorganisms produce electrons surface an electrode, which generates stable 485 mV when combined with cathode where reduced. system, maximum density 23 Am-2 in combination 5.5 Wm-2 was XRD analysis confirmed 99% purity deposited onto surface. . Analysis showed highest current, most occurred membrane, while anode had lowest contribution total loss. These results encourage further development BESs bioelectrochemical metal recovery.

参考文章(22)
Deepak Pant, Anoop Singh, Gilbert Van Bogaert, Yolanda Alvarez Gallego, Ludo Diels, Karolien Vanbroekhoven, An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects Renewable & Sustainable Energy Reviews. ,vol. 15, pp. 1305- 1313 ,(2011) , 10.1016/J.RSER.2010.10.005
Changyong Zhang, Peng Liang, Yong Jiang, Xia Huang, Enhanced power generation of microbial fuel cell using manganese dioxide-coated anode in flow-through mode Journal of Power Sources. ,vol. 273, pp. 580- 583 ,(2015) , 10.1016/J.JPOWSOUR.2014.09.129
Hu-Chun Tao, Min Liang, Wei Li, Li-Juan Zhang, Jin-Ren Ni, Wei-Min Wu, Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell Journal of Hazardous Materials. ,vol. 189, pp. 186- 192 ,(2011) , 10.1016/J.JHAZMAT.2011.02.018
René A. Rozendal, Hubertus V.M. Hamelers, Redmar J. Molenkamp, Cees J.N. Buisman, Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes Water Research. ,vol. 41, pp. 1984- 1994 ,(2007) , 10.1016/J.WATRES.2007.01.019
P. Kuntke, T.H.J.A. Sleutels, M. Saakes, C.J.N. Buisman, Hydrogen production and ammonium recovery from urine by a Microbial Electrolysis Cell International Journal of Hydrogen Energy. ,vol. 39, pp. 4771- 4778 ,(2014) , 10.1016/J.IJHYDENE.2013.10.089
F Vegliò, R Quaresima, P Fornari, S Ubaldini, Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning. Waste Management. ,vol. 23, pp. 245- 252 ,(2003) , 10.1016/S0956-053X(02)00157-5
Tom H.J.A. Sleutels, Hubertus V.M. Hamelers, Cees J.N. Buisman, Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance Bioresource Technology. ,vol. 102, pp. 399- 403 ,(2011) , 10.1016/J.BIORTECH.2010.06.018
Oskar Modin, Xiaofei Wang, Xue Wu, Sebastien Rauch, Karin Karlfeldt Fedje, Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions Journal of Hazardous Materials. ,vol. 235-236, pp. 291- 297 ,(2012) , 10.1016/J.JHAZMAT.2012.07.058
Bruce E. Logan, Douglas Call, Shaoan Cheng, Hubertus V. M. Hamelers, Tom H. J. A. Sleutels, Adriaan W. Jeremiasse, René A. Rozendal, Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter Environmental Science & Technology. ,vol. 42, pp. 8630- 8640 ,(2008) , 10.1021/ES801553Z