Gauge Fields and Interacting Particles

作者: N. Nekrasov

DOI: 10.1007/978-1-4612-1206-5_23

关键词:

摘要: In this short survey we discuss integrable many-body systems and their relation to gauge theories. One aspect of such a is the Hamiltonian reduction, which produces model out simple dynamical system. The phase spaces original are constructed using infinite-dimensional current algebras. We briefly dualities, relating systems. Finally, outline applications studies moduli vacua supersymmetric theories in four five dimensions present derivations some these results string theory.

参考文章(36)
Boris A Kupershmidt, Integrable and superintegrable systems World Scientific. ,(1990) , 10.1142/1174
Victor V. Batyrev, Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori Duke Mathematical Journal. ,vol. 69, pp. 349- 409 ,(1993) , 10.1215/S0012-7094-93-06917-7
A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Integrability and Seiberg-Witten exact solution Physics Letters B. ,vol. 355, pp. 466- 474 ,(1995) , 10.1016/0370-2693(95)00723-X
Nikita Nekrasov, Albion E. Lawrence, Instanton sums and five-dimensional gauge theories Nuclear Physics. ,vol. 513, pp. 239- 265 ,(1998) , 10.1016/S0550-3213(97)00694-9
Vladimir Fock, Alexander Gorsky, Nikita Nekrasov, Vladimir Rubtsov, Duality in integrable systems and gauge theories Journal of High Energy Physics. ,vol. 2000, pp. 028- 028 ,(2000) , 10.1088/1126-6708/2000/07/028
M. A. Olshanetsky, A. M. Perelomov, Completely Integrable Hamiltonian Systems Connected with Semisimple Lie Algebras Inventiones Mathematicae. ,vol. 37, pp. 93- 108 ,(1976) , 10.1007/BF01418964
Wolfgang Lerche, Stefan Theisen, Albrecht Klemm, Shimon Yankielowicz, Simple singularities and N = 2 supersymmetric Yang-Mills theory Physics Letters B. ,vol. 344, pp. 169- 175 ,(1995) , 10.1016/0370-2693(94)01516-F
B. Kostant, S. Sternberg, D. Kazhdan, Hamiltonian group actions and dynamical systems of calogero type Communications on Pure and Applied Mathematics. ,vol. 31, pp. 481- 507 ,(1978) , 10.1002/CPA.3160310405