A tabular method for correcting skewness

作者: Peter Hall

DOI: 10.1017/S0305004100063118

关键词:

摘要: We propose a smooth correction for skewness in an asymptotically normal statistic. Unlike the case of approximation by Edgeworth expansion, our applies uniformly all values level. The is based on ' comparison statistic', and, Studentized mean, it enables removal effects up to terms order .

参考文章(11)
Rabi N. Bhattacharya, R. Ranga Rao, Normal Approximation and Asymptotic Expansions ,(1976)
Noel Cressie, Relaxing assumptions in the one sample t-test Australian & New Zealand Journal of Statistics. ,vol. 22, pp. 143- 153 ,(1980) , 10.1111/J.1467-842X.1980.TB01161.X
Peter Hall, Inverting an Edgeworth Expansion Annals of Statistics. ,vol. 11, pp. 569- 576 ,(1983) , 10.1214/AOS/1176346162
D. M. Chibisov, An Asymptotic Expansion for a Class of Estimators Containing Maximum Likelihood Estimators Theory of Probability & Its Applications. ,vol. 18, pp. 295- 303 ,(1974) , 10.1137/1118031
R. N. Bhattacharya, J. K. Ghosh, ON THE VALIDITY OF THE FORMAL EDGEWORTH EXPANSION Annals of Statistics. ,vol. 6, pp. 434- 451 ,(1978) , 10.1214/AOS/1176344134
D. M. Chibisov, An Asymptotic Expansion for the Distribution of a Statistic Admitting an Asymptotic Expansion Theory of Probability & Its Applications. ,vol. 17, pp. 620- 630 ,(1973) , 10.1137/1117075
K. O. Bowman, J. J. Beauchamp, L. R. Shenton, The Distribution of the t-statistic under Non-normality International Statistical Review. ,vol. 45, pp. 233- ,(1977) , 10.2307/1402537