Isogeometric triangular Bernstein–Bézier discretizations: Automatic mesh generation and geometrically exact finite element analysis

作者: Luke Engvall , John A. Evans

DOI: 10.1016/J.CMA.2016.02.012

关键词:

摘要: … –Bézier triangles. In addition to presenting finite element analysis methodologies based on rational Bernstein–Bézier triangles, we also introduce two new mesh … of our mesh generation …

参考文章(38)
Ronald N. Goldman, Daniel J. Filip, Conversion from Be´zier rectangles to Be´zier triangles Computer-aided Design. ,vol. 19, pp. 25- 27 ,(1987) , 10.1016/0010-4485(87)90149-7
Hendrik Speleers, Carla Manni, Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines Journal of Computational and Applied Mathematics. ,vol. 289, pp. 68- 86 ,(2015) , 10.1016/J.CAM.2015.03.024
M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B. Simeon, A. -V. Vuong, Swept Volume Parameterization for Isogeometric Analysis conference on mathematics of surfaces. ,vol. 5654, pp. 19- 44 ,(2009) , 10.1007/978-3-642-03596-8_2
Songtao Xia, Xilu Wang, Xiaoping Qian, Continuity and convergence in rational triangular Bézier spline based isogeometric analysis Computer Methods in Applied Mechanics and Engineering. ,vol. 297, pp. 292- 324 ,(2015) , 10.1016/J.CMA.2015.09.001
Lei Liu, Yongjie Zhang, Yang Liu, Wenping Wang, Feature-preserving T-mesh construction using skeleton-based polycubes Computer-aided Design. ,vol. 58, pp. 162- 172 ,(2015) , 10.1016/J.CAD.2014.08.020
Charles Loop, A G 1 triangular spline surface of arbitrary topological type Computer Aided Geometric Design. ,vol. 11, pp. 303- 330 ,(1994) , 10.1016/0167-8396(94)90005-1
J.M. Escobar, J.M. Cascón, E. Rodríguez, R. Montenegro, A new approach to solid modeling with trivariate T-splines based on mesh optimization Computer Methods in Applied Mechanics and Engineering. ,vol. 200, pp. 3210- 3222 ,(2011) , 10.1016/J.CMA.2011.07.004
Xiao-Juan Luo, Mark S. Shephard, Robert M. O’Bara, Rocco Nastasia, Mark W. Beall, Automatic p-version mesh generation for curved domains Engineering With Computers. ,vol. 20, pp. 273- 285 ,(2004) , 10.1007/S00366-004-0295-1
T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement Computer Methods in Applied Mechanics and Engineering. ,vol. 194, pp. 4135- 4195 ,(2005) , 10.1016/J.CMA.2004.10.008
Mark Yerry, Mark Shephard, A Modified Quadtree Approach To Finite Element Mesh Generation IEEE Computer Graphics and Applications. ,vol. 3, pp. 39- 46 ,(1983) , 10.1109/MCG.1983.262997