Isometric Embeddings of Riemannian Manifolds

作者: Matthias Günther

DOI:

关键词:

摘要: The dot in (1) denotes the usual scalar product of R. notion embedding means, that w is locally an immersion and globally a homeomorphism M onto subspace u(M) R*. If : -• R satisfies on whole M, we speak isometric embedding. solution (possibly small) neighbourhood any point local A further question regularity dependence metric. And finally, what can be said about minimal value

参考文章(14)
Matthias Günther, Zum Einbettungssatz von J. Nash Mathematische Nachrichten. ,vol. 144, pp. 165- 187 ,(1989) , 10.1002/MANA.19891440113
E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems, I Communications on Pure and Applied Mathematics. ,vol. 28, pp. 91- 140 ,(1976) , 10.1002/CPA.3160280104
M L Gromov, V A Rokhlin, Embeddings and immersions in Riemannian geometry Russian Mathematical Surveys. ,vol. 25, pp. 1- 57 ,(1970) , 10.1070/RM1970V025N05ABEH003801
Richard S. Hamilton, The inverse function theorem of Nash and Moser Bulletin of the American Mathematical Society. ,vol. 7, pp. 65- 222 ,(1982) , 10.1090/S0273-0979-1982-15004-2
The imbedding problem for Riemannian manifolds Annals of Mathematics. ,vol. 63, pp. 20- 63 ,(1956) , 10.1515/9781400884087-013
Matthias G�nthier, On the perturbation problem associated to isometric embeddings of Riemannian manifolds Annals of Global Analysis and Geometry. ,vol. 7, pp. 69- 77 ,(1989) , 10.1007/BF00137403
Lars Hörmander, On the Nash-Moser implicit function theorem Annales Academiae Scientiarum Fennicae. Series A. I. Mathematica. ,vol. 10, pp. 255- 259 ,(1985) , 10.5186/AASFM.1985.1028
John Nash, C 1 Isometric Imbeddings The Annals of Mathematics. ,vol. 60, pp. 383- ,(1954) , 10.2307/1969840
J. Nash, Analyticity of the Solutions of Implicit Function Problems With Analytic Data The Annals of Mathematics. ,vol. 84, pp. 345- ,(1966) , 10.2307/1970448
Howard Jacobowitz, Implicit Function Theorems and Isometric Embeddings The Annals of Mathematics. ,vol. 95, pp. 191- ,(1972) , 10.2307/1970796