Adjoint Sensitivity Analysis for Shallow-Water Wave Control

作者: Brett F. Sanders , Nikolaos D. Katopodes

DOI: 10.1061/(ASCE)0733-9399(2000)126:9(909)

关键词:

摘要: An adjoint sensitivity method based on the shallow-water equations is developed for water wave control in river and estuarine systems. The used to compute gradient of a user-defined objective function \iN-dimensional parameter space consisting system settings with just one solution basic problem associated problem. Characteristic are derived new formalism proposed flow boundary changes depth discharge. New conditions forecasting models open-water inflow outflow sections. This gives rise expressions sensitivities at these analysis problems shows that propagate reverse time direction along characteristic paths Riemann variables shown precisely describe discharge boundaries. extended two dimensions by bicharacteristic analysis.

参考文章(34)
Guriĭ Ivanovich Marchuk, Adjoint Equations and Analysis of Complex Systems ,(1995)
Nikolaos D. Katopodes, Michael Piasecki, Site and size optimization of contaminant sources in surface water systems Journal of Environmental Engineering. ,vol. 122, pp. 917- 923 ,(1996) , 10.1061/(ASCE)0733-9372(1996)122:10(917)
R. W. Lardner, A. H. Al-Rabeh, N. Gunay, Optimal estimation of parameters for a two‐dimensional hydrodynamical model of the Arabian Gulf Journal of Geophysical Research. ,vol. 98, pp. 18229- 18242 ,(1993) , 10.1029/93JC01411
Bjorn Engquist, Andrew Majda, Absorbing boundary conditions for the numerical simulation of waves Mathematics of Computation. ,vol. 31, pp. 629- 651 ,(1977) , 10.1090/S0025-5718-1977-0436612-4
Dan G. Cacuci, Sensitivity theory for nonlinear systems. II. Extensions to additional classes of responses Journal of Mathematical Physics. ,vol. 22, pp. 2803- 2812 ,(1981) , 10.1063/1.524870
Michael Piasecki, Nikolaos D. Katopodes, CONTROL OF CONTAMINANT RELEASES IN RIVERS. II: OPTIMAL DESIGN Journal of Hydraulic Engineering. ,vol. 123, pp. 493- 503 ,(1997) , 10.1061/(ASCE)0733-9429(1997)123:6(493)
Brett F. Sanders, Nikolaos D. Katopodes, Control of Canal Flow by Adjoint Sensitivity Method Journal of Irrigation and Drainage Engineering-asce. ,vol. 125, pp. 287- 297 ,(1999) , 10.1061/(ASCE)0733-9437(1999)125:5(287)
Matthew C. G. Hall, Dan G. Cacuci, Physical Interpretation of the Adjoint Functions for Sensitivity Analysis of Atmospheric Models Journal of the Atmospheric Sciences. ,vol. 40, pp. 2537- 2546 ,(1983) , 10.1175/1520-0469(1983)040<2537:PIOTAF>2.0.CO;2
S. K. Das, R. W. Lardner, VARIATIONAL PARAMETER ESTIMATION FOR A TWO-DIMENSIONAL NUMERICAL TIDAL MODEL International Journal for Numerical Methods in Fluids. ,vol. 15, pp. 313- 327 ,(1992) , 10.1002/FLD.1650150305
Ralph T. Cheng, Vincenzo Casulli, Jeffrey W. Gartner, Tidal, Residual, Intertidal Mudflat (TRIM) Model and its Applications to San Francisco Bay, California Estuarine, Coastal and Shelf Science. ,vol. 36, pp. 235- 280 ,(1993) , 10.1006/ECSS.1993.1016