An effective technique to detect forest fire region through ANFIS with spatial data

作者: K. Angayarkkani , N. Radhakrishnan

DOI: 10.1109/ICECTECH.2011.5941794

关键词:

摘要: Recently, spatial data mining plays a vital role because of its pressing need in the real world applications. Among wide range applications nature disaster diagnosis is most imperative and besides other forest fire region through imponderable. Forest fires are an increasing threat to environment both tropical boreal regions world. Hence detection remote sensing images important. In this work, detected three phases, preprocessing phase, training phase phase. Initially filtered unsharp filtering then image converted CIEXYZ color space. Then XYZ spaced segmented anisotropic diffusion technique. After that trained Adaptive Neuro Fuzzy Inference System (ANFIS) test tested ANFIS after completion process consequently detected. identified effective manner.

参考文章(19)
Mohamed Hefeeda, Majid Bagheri, Forest Fire Modeling and Early Detection using Wireless Sensor Networks Ad Hoc & Sensor Wireless Networks. ,vol. 7, pp. 169- 224 ,(2009)
Behrouz Shasti, Ayyoub Rezaeeian, Alireza Doosthoseini, Aghil Yousefi-Koma, ANFIS modeling and feed forward control of shape memory alloy actuators ACMOS'08 Proceedings of the 10th WSEAS International Conference on Automatic Control, Modelling & Simulation. pp. 243- 248 ,(2008)
Joaquín Pérez-Ortega, Fátima Miranda-Henriques, Gerardo Reyes-Salgado, René Santaolaya-Salgado, Rodolfo A Pazos-Rangel, Adriana Mexicano-Santoyo, Spatial Data Mining of a Population-Based Data Warehouse of Cancer in Mexico International Journal of Combinatorial Optimization Problems and Informatics. ,vol. 1, pp. 61- 67 ,(2010)
K. Angayarkkani, N. Radhakrishnan, An Intelligent System For Effective Forest Fire Detection Using Spatial Data arXiv: Other Computer Science. ,(2010)
Louis Giglio, Jacques Descloitres, Christopher O. Justice, Yoram J. Kaufman, An Enhanced Contextual Fire Detection Algorithm for MODIS Remote Sensing of Environment. ,vol. 87, pp. 273- 282 ,(2003) , 10.1016/S0034-4257(03)00184-6
Amarnath Giriraj, Shilpa Babar, Anke Jentsch, Singuluri Sudhakar, Manchi Sri Ramachandra Murthy, None, Tracking Fires in India Using Advanced Along Track Scanning Radiometer (A)ATSR Data Remote Sensing. ,vol. 2, pp. 591- 610 ,(2010) , 10.3390/RS2020591
C. Ichoku, Y. J. Kaufman, L. Giglio, Z. Li, R. H. Fraser, J.-Z. Jin, W. M. Park, Comparative analysis of daytime fire detection algorithms using AVHRR data for the 1995 fire season in Canada: Perspective for MODIS International Journal of Remote Sensing. ,vol. 24, pp. 1669- 1690 ,(2003) , 10.1080/01431160210144697
Yasar Guneri Sahin, Turker Ince, Early Forest Fire Detection Using Radio-Acoustic Sounding System Sensors. ,vol. 9, pp. 1485- 1498 ,(2009) , 10.3390/S90301485
Peng Gong, Ruiliang Pu, Zhanqing Li, James Scarborough, Nicolas Clinton, Lisa M. Levien, An Integrated Approach to Wildland Fire Mapping of California, USA Using NOAA/AVHRR Data Photogrammetric Engineering and Remote Sensing. ,vol. 72, pp. 139- 150 ,(2006) , 10.14358/PERS.72.2.139
Yasar Sahin, Animals as Mobile Biological Sensors for Forest Fire Detection Sensors. ,vol. 7, pp. 3084- 3099 ,(2007) , 10.3390/S7123084